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Motivation

• Trust Execution Environments (TEEs) are essential to securing important data 

and operation in IoT devices.
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Motivation
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• Trusted OS is the primary component to enable the TEE to use security techniques.

• The flaws in Trusted OS result in sensitive data leakage and code execution.
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Challenges of Fuzzing Trusted OSes
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• Challenge 1: Inability of instrumentation and constraint resource 

Normal World

Secure World
Minimal Fuzzer (466 KB)

RAM

96 KB

Cannot be loaded to 
the MCU!

MCU FLASH (512 KB)

TEE (448KB)

Operation 
allocated

Operation 
key set Cipher 

initialized

Operation 
freed

Cipher 
updated

struct TEE_OperationHandle{ 

uint32_t  algorithm,

uint32_t operationState,

TEE_ObjectHandle key…

}

Control the execution context

• Challenge 2: Stateful workflow and complex structure
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Methodology



• Inability of instrumentation: ARM Coresight ETM provides real-time instruction 

tracing, which can be utilized to calculate code coverage.

• Constraint resource: we can decouple execution to offload heavy-weight tasks to 

the PC (e.g., seed scheduling).

Observations and Intuitions
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• Several variables in handle structures determine the Trusted OS’ internal state.

• State coverage can be calculated based on the combination values of the 

variables, which supplement code coverage.

Observations and Intuitions
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TEE_OperationHandle 
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operationState: 0           
TEE_ObjectHandle: 0   
mode: 0   
…

TEE_OperationHandle 

algorithm: ALG_AES_ECB
operationState: INITIALIZED
TEE_ObjectHandle: 
0x2000000
mode: MODE_ENCRTYPY
…

TEE_OperationHandle

algorithm: ALG_AES_ECB
operationState: ACTIVE
TEE_ObjectHandle: 
0x2000000
mode: MODE_ENCRTYPY
…

TEE_Allocate
Operation

TEE_CipherUpdate
TEE_MACInit
…

TEE_CipherDoFinal
TEE_MACComputeFinal
…

Challenge 2



SyzTrust End-to-End
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• The fuzzing engine generates and sends test cases to the MCU via a debug probe. 

• The execution engine executes the received test case on the target Trusted OS.



SyzTrust End-to-End

10

Manager
Proxy CA & TA

Trusted OS

Trusted OS State Variables
State Variable 

Inference

State coverage

Code coverage

Initial 
Seeds

State Variables 
Monitor

Hardware-assisted 
Controller

Trace Collector

Execution Engine
(on MCU)Test cases

A composite 
feedback

Test 
cases

Feedback

Fuzzing Engine (on PC)

D
e

b
u

g P
ro

b
e

Test 
cases

FeedbackSyscall 
Templates

Fuzzing Loop
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• The execution engine executes the received test case on the target Trusted OS.



• Problem: the ETM component records all instruction traces generated by the CA, 

rich OS, the TA, and the Trusted OS, which contain noisy trace packets.

• Solution: collect instruction traces only when Trusted OS executes a syscall.

SyzTrust – Trace Collector
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• Problem: aligning decoded ETM packets to disassembled instruction sequences is 

hard and time-consuming.

• Solution: directly calculate the coverage via ETM branch and P-header packets .

SyzTrust – Trace Collector

12

Branch 
Coverage

LCSAJ_(i+1)

LCSAJ_i0x08004030

…

0x080040a0

0x08000004

0x08004034

0x08004044

…
…

Branch packet
0x08004030

P-header
0b11010000

(EEEEN)

Branch packet
0x080040a0

…
…

PC addresses ETM packets

LCSAJ 
Block

Hash

Hash

Hash



SyzTrust End-to-End
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• The fuzzing engine generates and sends test cases to the MCU via a debug probe. 

• The execution engine executes the received test case on the target Trusted OS.



SyzTrust – State Variable Inference and Monitor

• Goal: infer the address ranges of state variables before fuzzing

track the values of the address ranges during fuzzing
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SyzTrust – State Variable Inference and Monitor

• Goal: infer the address ranges of state variables before fuzzing

track the values of the address ranges during fuzzing
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SyzTrust End-to-End
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• Goal: state and code coverage guided seed preservation.

SyzTrust – Fuzzing Loop and Composite Feedback Mechanism
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• Goal: state and code coverage guided seed collection.

SyzTrust – Fuzzing Loop and Composite Feedback Mechanism
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Evaluation



Evaluation – Effectiveness of SyzTrust
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• SyzTrust outperforms Syzkaller in terms of code and state coverage and detected 

vulnerabilities on mTower from Samsung.

Branch coverage State coverage Unique vulnerabilities



Evaluation – Effectiveness of State Variable Inference
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• On average, our active state variable inference method achieves 83.3% precision. 

From semantics perspective, the inferred state variables are meaningful.



Evaluation – Real World Vulnerabilities
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• SyzTrust identifies 70 vulnerabilities on Trusted OSes from Samsung, Alibaba and 
Tsinglink Cloud, resulting in 10 CVEs.
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Evaluation – Overhead Breakdown
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• The subprocess of executing a test case on the MCU takes the most time, while 

the orchestration and analysis take only roughly 1% of the overall time.



Extend SyzTrust to Other Trusted OSes

• Prerequisites: (1) a TA can be installed in the Trusted OS; (2) target devices have 

ETM enabled.
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Extend to Trusted OS 
implementing standard APIs

Extend to Proprietary 
Trusted OSes

(1) update MCU configurations; 

(2) slightly adjustment on our 
designed TA and CA.

(1) Update MCU configurations;

(2) augment the syscall templates 
and the API declarations in our 
designed TA; 

(3) extract the state-related 
structures (e.g., context).
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Summary



SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices 

• Inability of instrumentation, constrained resource, and stateful 

workflow make testing IoT Trusted OS challenging.

• SyzTrust is the first fuzzing framework for IoT Trusted OSes.

(1) A branch coverage collection utilizing ARM Coresight ETM.

(2) A composite feedback mechanism including code and state 

coverage.

• SyzTrust found 70 new bugs in Trusted OSes from Samsung, 

Alibaba and Tsinglink Cloud.
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Thanks
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IoT Trusted OSes in Real World

29

An overview of the major Trusted OS implementations provided by leading IoT vendors



IoT Trusted OSes in Real World
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ETM feature on IoT devices


