
SyzTrust: State-aware Fuzzing on
Trusted OS Designed for IoT Devices
Qinying Wang, Boyu Chang, Shouling Ji, Yuan Tian, Xuhong Zhang, Binbin Zhao,

Gaoning Pan, Chenyang Lyu, Mathias Payer, Wenhai Wang, Raheem Beyah

2

• 1. Motivation and Challenges

• 2. Methodology

• 3. Evaluation

• 4. Summary

Contents

Motivation

• Trust Execution Environments (TEEs) are essential to securing important data

and operation in IoT devices.

3

Smart Lock

FIDO Security Key

Normal World

Secure World
(Identities)

Fingerprint
Sensor

SPI
LCM

Display

TEE in Smart Lock

Smart Card

Fingerprint
Sensor

Normal World

Secure World
(AuthN.)

USBHost SD Card

TEE in FIDO Security Key Smart Locker

Drone
…

Motivation

4

• Trusted OS is the primary component to enable the TEE to use security techniques.

• The flaws in Trusted OS result in sensitive data leakage and code execution.

TEE Client APIs

Rich OS
(e.g., FreeRTOS)

Trusted OS

TEE Internal APIs

Normal World Secure World

Switch
Instructions

Trusted Applications (TAs)

TA TA TA

Client Applications (CAs)

CA CA CA

TrustZone-M based TEE

• Gaining control

• Extracting confidential data

• Causing system-wide crashes

…

Trusted OS or other TAs

Challenges of Fuzzing Trusted OSes

5

• Challenge 1: Inability of instrumentation and constraint resource

Normal World

Secure World
Minimal Fuzzer (466 KB)

RAM

96 KB

Cannot be loaded to
the MCU!

MCU FLASH (512 KB)

TEE (448KB)

Operation
allocated

Operation
key set Cipher

initialized

Operation
freed

Cipher
updated

struct TEE_OperationHandle{

uint32_t algorithm,

uint32_t operationState,

TEE_ObjectHandle key…

}

Control the execution context

• Challenge 2: Stateful workflow and complex structure

6

Methodology

• Inability of instrumentation: ARM Coresight ETM provides real-time instruction

tracing, which can be utilized to calculate code coverage.

• Constraint resource: we can decouple execution to offload heavy-weight tasks to

the PC (e.g., seed scheduling).

Observations and Intuitions

7

Trace
cable

USB
cable

Fuzzer Debug
probe

Trusted OS running
on an MCU

Challenge 1

A hardware-in-the-loop framework

• Several variables in handle structures determine the Trusted OS’ internal state.

• State coverage can be calculated based on the combination values of the

variables, which supplement code coverage.

Observations and Intuitions

8

TEE_OperationHandle

algorithm: 0
operationState: 0
TEE_ObjectHandle: 0
mode: 0
…

TEE_OperationHandle

algorithm: ALG_AES_ECB
operationState: INITIALIZED
TEE_ObjectHandle:
0x2000000
mode: MODE_ENCRTYPY
…

TEE_OperationHandle

algorithm: ALG_AES_ECB
operationState: ACTIVE
TEE_ObjectHandle:
0x2000000
mode: MODE_ENCRTYPY
…

TEE_Allocate
Operation

TEE_CipherUpdate
TEE_MACInit
…

TEE_CipherDoFinal
TEE_MACComputeFinal
…

Challenge 2

SyzTrust End-to-End

9

Manager
Proxy CA & TA

Trusted OS

Trusted OS State Variables
State Variable

Inference

State coverage

Code coverage

Initial
Seeds

State Variables
Monitor

Hardware-assisted
Controller

Trace Collector

Execution Engine
(on MCU)Test cases

A composite
feedback

Test
cases

Feedback

Fuzzing Engine (on PC)

D
e

b
u

g P
ro

b
e

Test
cases

FeedbackSyscall
Templates

Fuzzing Loop

• The fuzzing engine generates and sends test cases to the MCU via a debug probe.

• The execution engine executes the received test case on the target Trusted OS.

SyzTrust End-to-End

10

Manager
Proxy CA & TA

Trusted OS

Trusted OS State Variables
State Variable

Inference

State coverage

Code coverage

Initial
Seeds

State Variables
Monitor

Hardware-assisted
Controller

Trace Collector

Execution Engine
(on MCU)Test cases

A composite
feedback

Test
cases

Feedback

Fuzzing Engine (on PC)

D
e

b
u

g P
ro

b
e

Test
cases

FeedbackSyscall
Templates

Fuzzing Loop

• The fuzzing engine generates and sends test cases to the MCU via a debug probe.

• The execution engine executes the received test case on the target Trusted OS.

• Problem: the ETM component records all instruction traces generated by the CA,

rich OS, the TA, and the Trusted OS, which contain noisy trace packets.

• Solution: collect instruction traces only when Trusted OS executes a syscall.

SyzTrust – Trace Collector

11

Trusted OS
executes a syscall

A data event is
triggered to start

tracing

A data event is
triggered to stop

tracing

An event-based filter via the Data Watchpoint and Trace Unit

• Problem: aligning decoded ETM packets to disassembled instruction sequences is

hard and time-consuming.

• Solution: directly calculate the coverage via ETM branch and P-header packets .

SyzTrust – Trace Collector

12

Branch
Coverage

LCSAJ_(i+1)

LCSAJ_i0x08004030

…

0x080040a0

0x08000004

0x08004034

0x08004044

…
…

Branch packet
0x08004030

P-header
0b11010000

(EEEEN)

Branch packet
0x080040a0

…
…

PC addresses ETM packets

LCSAJ
Block

Hash

Hash

Hash

SyzTrust End-to-End

13

Manager
Proxy CA & TA

Trusted OS

Trusted OS State Variables
State Variable

Inference

State coverage

Code coverage

Initial
Seeds

State Variables
Monitor

Hardware-assisted
Controller

Trace Collector

Execution Engine
(on MCU)Test cases

A composite
feedback

Test
cases

Feedback

Fuzzing Engine (on PC)

D
e

b
u

g P
ro

b
e

Test
cases

FeedbackSyscall
Templates

Fuzzing Loop

• The fuzzing engine generates and sends test cases to the MCU via a debug probe.

• The execution engine executes the received test case on the target Trusted OS.

SyzTrust – State Variable Inference and Monitor

• Goal: infer the address ranges of state variables before fuzzing

track the values of the address ranges during fuzzing

14

Trusted OS

Test Harness

TEE_AllocateOperation

(TEE_OperationHandle *operation,

uint32_t algorithm, uint32_t mode,

uint32_t maxKeySize)

TEE_ResetOperation(…)…

Output Buffer
0000 0000 00c0 0000 0000 0008 0000

0000 0000 00a8 2d00 2000 0000 0000

…

struct __TEE_OperationHandle{

[0:3] algorithm: 0000 0000 00c0 0000 …

…

[40:43] operationState: 0001

…

}

State Variable
Inferer

Hardware-assisted
State Variables Monitor

Test Cases

SyzTrust – State Variable Inference and Monitor

• Goal: infer the address ranges of state variables before fuzzing

track the values of the address ranges during fuzzing

15

Real Time Transfer

[0:3] 00c0 0000 …

…

[40:43] 0001

StateHash = Hash([0:3] … [40:43])

Hardware-assisted State
Variables Monitor

SyzTrust End-to-End

16

Manager
Proxy CA & TA

Trusted OS

Trusted OS State Variables
State Variable

Inference

State coverage

Code coverage

Initial
Seeds

State Variables
Monitor

Hardware-assisted
Controller

Trace Collector

Execution Engine
(on MCU)Test cases

A composite
feedback

Test
cases

Feedback

Fuzzing Engine (on PC)

D
e

b
u

g P
ro

b
e

Test
cases

FeedbackSyscall
Templates

Fuzzing Loop

• The fuzzing engine generates and sends test cases to the MCU via a debug probe.

• The execution engine executes the received test case on the target Trusted OS.

• Goal: state and code coverage guided seed preservation.

SyzTrust – Fuzzing Loop and Composite Feedback Mechanism

17

Test
cases

Corpus

New code or
state coverage is

triggered

Seed Preservation

• Goal: state and code coverage guided seed collection.

SyzTrust – Fuzzing Loop and Composite Feedback Mechanism

18

Corpus

① choose the state
that rarely hit

② choose the seed that
achieves higher branch

coverage

Seed
Selection

19

Evaluation

Evaluation – Effectiveness of SyzTrust

20

• SyzTrust outperforms Syzkaller in terms of code and state coverage and detected

vulnerabilities on mTower from Samsung.

Branch coverage State coverage Unique vulnerabilities

Evaluation – Effectiveness of State Variable Inference

21

• On average, our active state variable inference method achieves 83.3% precision.

From semantics perspective, the inferred state variables are meaningful.

Evaluation – Real World Vulnerabilities

22

• SyzTrust identifies 70 vulnerabilities on Trusted OSes from Samsung, Alibaba and
Tsinglink Cloud, resulting in 10 CVEs.

Link TEE Air

Tsinglink Cloud

mTower

TinyTEE

Evaluation – Overhead Breakdown

23

• The subprocess of executing a test case on the MCU takes the most time, while

the orchestration and analysis take only roughly 1% of the overall time.

Extend SyzTrust to Other Trusted OSes

• Prerequisites: (1) a TA can be installed in the Trusted OS; (2) target devices have

ETM enabled.

24

Extend to Trusted OS
implementing standard APIs

Extend to Proprietary
Trusted OSes

(1) update MCU configurations;

(2) slightly adjustment on our
designed TA and CA.

(1) Update MCU configurations;

(2) augment the syscall templates
and the API declarations in our
designed TA;

(3) extract the state-related
structures (e.g., context).

25

Summary

SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices

• Inability of instrumentation, constrained resource, and stateful

workflow make testing IoT Trusted OS challenging.

• SyzTrust is the first fuzzing framework for IoT Trusted OSes.

(1) A branch coverage collection utilizing ARM Coresight ETM.

(2) A composite feedback mechanism including code and state

coverage.

• SyzTrust found 70 new bugs in Trusted OSes from Samsung,

Alibaba and Tsinglink Cloud.

Paper

Code

27

Thanks

Backup Slides

28

IoT Trusted OSes in Real World

29

An overview of the major Trusted OS implementations provided by leading IoT vendors

IoT Trusted OSes in Real World

30

ETM feature on IoT devices

