

MPInspector: A Systematic and Automatic Approach for Evaluating the Security of IoT Messaging Protocols

Qinying Wang Shouling Ji Yuan Tian Xuhong Zhang Binbin Zhao Yuhong Kan Zhaowei Lin Changting Lin Shuiguang Deng Alex X. Liu Raheem Beyah

Cloud based IoT Platforms

Most IoT platforms offer MP (Messaging Protocol) implementations.

Typical Architecture of IoT platform

An MP Workflow

An example workflow of MQTT standards:

An MP Workflow

An example workflow of MQTT standards:

Security and Privacy Threats on MP

Several MP flaws have been spotted including denial of service, sensitive data theft, malicious command injection, etc.

Threat Model

Neighbor scenario

- ✓ The victim and the attacker are in the same network.
- ✓ The attacker can eavesdrop, drop, modify, inject messages.

¤ Tenant scenario

- ✓ The victim uses some devices previously being used by the attacker.
- ✓ The attacker can collect the device identity (e.g., password).
- ✓ The attacker can leave a backdoor on the device.

How to build a systematic and automatic tool to evaluate the security of IoT MPs?

Challenges

Diverse and customized MP implementations

- ✓ Multiple types of MPs
- ✓ Customized implementations on different platforms

- **X** Complex and closed-source MP workflow
 - ✓ Stateful procedure with multiple messages
 - ✓ The implementation are closed-source

Customized MP Implementations

Customized MP Implementations

MP interaction logic

Customized MP Implementations

MP interaction logic

Customized interaction logic on duplicate connections with the same ClientId

Challenges

- **¤** Diverse and customized MP implementations
 - ✓ Multiple types of MPs
 - ✓ Customized implementations on different platforms

Complex and closed-source MP workflow

- ✓ Stateful procedure with multiple messages
- ✓ The implementations are closed-source

Limitations of Existing Attack Finding Strategies for IoT Protocols

Few analysis on implementation, mostly analyze the specification

Few logic vulnerabilities which do not cause crashes

No systematic and automatic approach

LTEInspector: A Systematic Approach for Adversarial Testing of 4G LTE

Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane

Hongil Kim KAIST

Burglars' IoT Paradise: Understanding and Mitigating Security Risks of General Messaging Protocols on IoT Clouds

Discovering and Understanding the Security Hazards in the Interactions between least IoT Devices, Mobile Apps, and Clouds on Smart Home Platforms

Wei Zhou¹, Yan Jia^{2,1}, Yao Yao^{2,1}, Lipeng Zhu^{2,1}, Le Guan³, Yuhang Mao^{2,1}, Peng Liu⁴ and Yuqing Zhang^{1,2,5*}

A property-driven and model-based testing philosophy.

A property-driven and model-based testing philosophy.

- **Secrecy properties extracted from the specification**
 - ✓ A set of parameters from messages that should be confidential

SecProp_Set={ClientId, Password, PUBLISH payload, ...}

- **Authentication properties extracted from the specification**
 - ✓ A set of messages that should be authenticated

AuthProp_Ser={CONNECT, PUBLISH, SUBSCRIBE, ...}

A property-driven and model-based testing philosophy.

State machine of the broker and device

2021/7/7

IoT Device

A property-driven and model-based testing philosophy.

State machine of the broker and device

2021/7/7

IoT Device

Overview of MPInspector

MPInspector has 5 modules and 3 inputs.

MP state machine extraction

Formal representation and formal verification

Message Semantics Extraction Workflow

Extracting the customized message semantics is not trivial.

- ✓ Traffic and document based analysis
- ✓ Patter matching & NLP

Traffic file

Message Semantics Extraction

NLP assisted IoT platform documents analysis.

Will Message: {"clientId": "036130xxx", "username":"light123/dev1"}

User Name: light123/dev1

Password: 5570ffxxxxxbd758

mqttPassword:sign_hma& (deviceSecret,content)

{iothubhostname}/{devic eld} in the Username field

Traffic file

IoT platform documents

Message Semantics Extraction

NLP assisted IoT platform documents analysis.

Message Semantics Extraction Workflow

- **Extracting the customized message semantics is not trivia.**
 - ✓ Traffic and document based analysis
 - ✓ Patter matching & NLP

EXP: {"CONNECT": {"ClientID": "", "username": {"composition": ["authid", "timestamp"]}}} "tenantid"]}, "password": {"encryption": "HMAC", "encryptedTerms": ["authid", "timestamp"]}}}

Interaction Logic Extraction

Apply active model learning to infer the interaction logic.

Interaction Logic Extraction

Only supports two parties and response messages.

✓ Extend the adapter to support multi-parties and monitoring the connection state

Interaction Logic Extraction Workflow

- The equivalence query is time-consuming while dealing multitype of messages.
 - ✓ A customized equivalence algorithm to cut down unnecessary queries
- **Model learning may be trapped into an endless procedure;**
 - ✓ An enhance learning algorithm

- ◆ Cond. 1: If an counterexample is found?
- ◆ Cond. 2: Is the number of same hypotheses greater than the threshold?

Interaction Logic Extraction

Modeling validity predicates.

Validity predicate testing by sending mutated message to the broker

Overview of MPInspector

MPInspector performs formal representation and formal verification.

Formal Verification

The search space of possible states may potentially explode.

✓ An inherent limitation of Tamarin Prover

✓ Helping oracle ranks the open goals based on our strategies

New Extension for New Types of MP

A one-short effort for each new MP type

- ✓ Message structure, meta properties and initial state of MP
- ✓ Concluded from the MP specification

Experiment settings

¤ Experiment settings

✓ Test ten MP implementations from nine leading IoT platforms

MQTT V3.1.1

MQTT V5.0

AMQP V1.0

CoAP

- ✓ Test the SaaS applications on our own services
- ✓ Validate our attack on our own devices

Findings

¤ Uncovered 11 types of MP attacks

Scenario	Attacks	Affected Protocol	Affected Platforms	Related Pr.			
Neighbor Scenario	Man-in-the-middle	All protocols	All platforms	MA1-MA9, AA1-AA13, CA1-CA8			
	Replay attack	MQTT V3.1.1 MQTT V5.0	AWS IoT Core Tuya IoT Smart Mosquitto	MA1-MA9, MA10-MA11 (MQTT V5.0)	•		
	Replay attack	CoAP	EMQ X	CA1-CA4			
		AMQP V1.0	ActiveMQ	AA1-AA13			
	Transfer sync. failure	AMQP V1.0	ActiveMQ	AA1-AA9			
Tenant Scenario	Client Identity Hijacking	MQTT V3.1.1 MQTT V5.0	Google IoT Core Azure IoT Hub AWS IoT Core Aliyun Cloud Mosquitto	MS1-MS7,MA1,MA3,MA5,MA7,MA9,R2	•		
		AMQP V1.0	ActiveMQ	AS1-AS5, AS1, AS3, AS5, AS7, AS9, AS11, AS13			
		CoAP	EMQ X Aliyun Cloud	CS1-CS11,CA1,CA3,CA5,CA7	•		
	Reflection attack CoAP		EMQ X Aliyun Cloud	CS1, CA1, CA3, CA5, CA7	•		
	Malicious Topic	MQTT V3.1.1	AWS IoT Core	S5, MS7, MA3			
	Subscription	AMQPv1.0	ActiveMQ	AS2, AS4, AA9			
	Malicious Topic	MQTT V3.1.1	AWS IoT Core	MS5, MS7-MS9, MA7			
	Publish	CoAP	EMQ X	CS1, CA3			
	Malicious Response Topic Publish	MQTT V5.0	Mosquitto	MS5, MS7-9, MA7	•		
	Unauthorized Will	MQTT V3.1.1	AWS IoT Core	MA1, MA10			
	Message	MQTT V5.0	Mosquitto	MA1, MA10			
	Unauthorized Retained Message	MQTT V5.0	Mosquitto	MA8, M11	•		
	Illegal Occupation	AMQP1.0	ActiveMQ	AS1, AA1, AA3			

Denial of Service (Neighbor Scenario)

Unauthorized Response Topic publish (Tenant Scenario)

AMQP illegal occupation (Tenant Scenario)

Performance

¤ The overhead of MPInspector

- ✓ The average precision of property violations is 1.00
- ✓ The average overhead is ~4.5 hours

IoT Platform	MP	Message semantics Extraction		Interaction Logic Extraction						Formal code Translation	Total Time
			Precision	States	Time Delay	# of Input Message Types	# MQs	# EQs	Time (h:mm)	Time (ms)	(h:mm)
Google IoT Core	MQTT V3.1.1	115	1.00	3	8s	5	215	373	06:32	0.04	06:32
AWS IoT Core	MQTT V3.1.1	102	1.00	3	3s	5	155	116	02:29	0.06	02:29
AWS IoT Core(will)	MQTT V3.1.1	103	1.00	8	5s	4	727	123	04:37	0.67	04:37
Azure IoT Hub	MQTT V3.1.1	107	1.00	3	8s	5	65	393	05:31	0.04	05:31
Bosch IoT Hub	MQTT V3.1.1	106	1.00	5	9s	5	184	599	09:38	0.03	09:38
Aliyun Cloud	MQTT V3.1.1	105	0.96	3	4s	5	62	1361	07:46	0.08	07:46
Tuya Smart	MQTT V3.1.1	110	1.00	3	8s	5	65	393	04:53	0.03	04:53
Mosquitto	MQTT V5.0	106	1.00	2	1s	5	65	393	00:23	0.03	00:23
Mosquitto(will)	MQTT V5.0	106	1.00	6	5s	4	317	123	03:13	1.26	03:13
Mosquitto(retain)	MQTT V5.0	106	1.00	8	7s	6	727	749	08:02	1.18	08:02
EMQ X	CoAP	928	1.00	1	1s	4	24	420	03:47	125	03:47
Aliyun Cloud	CoAP	2152	1.00	2	1s	3	27	273	04:07	1627	04:07
ActiveMQ	AMQP V1.0	1808	1.00	9	1s	8	728	846	05:11	1917	05:11

Discussion

Mitigate security risks

X Limitation and future work

- ✓ Fine-grained testing and more flexible model learning strategies
- ✓ Automatic meta property extraction based on NLP
- ✓ Applying MPInspector on more MPs and devices

Summary

- The first systematic and automatic framework for evaluating the security of MP implementations.
- **A large-scale experiment on 3 popular MPs on 9 leading IoT platforms.**
- **¤** Uncover 11 kinds of attacks.
- p https://github.com/wqqqy/MPInspector

wangqinying@zju.edu.cn