

Graph Backdoor

Zhaohan Xi¹, Ren Pang¹, Shouling Ji², Ting Wang¹

¹Pennsylvania State University, College of Information Science and Technology ²Zhejiang University, College of Computer Science and Technology

Motivation

Backdoor attacks against DNNs

- o A trojan model responds to trigger-embedded inputs in a specific manner
- While the trojan model functioning normally for untouched inputs

Graph data and GNNs

- \circ Graph data format is widely use as a flexible representation
- o GNNs are learning-based models to capture graph/node properties
- $\circ~$ The vulnerabilities in graphs and GNNs are largely unexplored

Graph-domain challenges

- <u>Trigger definition</u> : has both topological structure and descriptive features
- o <u>Input-tailored</u> : a trigger is tailored to the characteristics of an individual graph
- Adaptive location : a trigger should be embedded into a suitable locality

GTA: <u>Graph Trojaning Attack</u>

- Upstream: adaptive learning
 - \circ The adversary forges a trojan GNN $f_{ heta}$ (pre-trained model) via perturbing its parameters
 - \circ To realize attack, the adversary leverages bi-level optimization between $f_{ heta}$ and trigger g_t
- Downstream: model-agonistic
 - The adversary has no access to downstream model h, but z_G can lead to a falsified result

GTA: Trigger Generation

Graph encoding

Trigger generation

- Use attention nets to encode G and get Z
- The encodings are assured to capture both topological information and original features
- Node connectivity: $\tilde{A}_{ij} = \mathbb{I}_{sim(\phi_{\omega}(z_i),\phi_{\omega}(z_j)) \ge 0.5}$
- Backdoor features: $\tilde{X}_i = \sigma(Wz_i + b), W, b \in \phi_{\omega}$
- Combine \tilde{A} and \tilde{X} as g_t , where $i, j \in g_t$

GTA: Backdoor Poisoning

Trigger Injection Backdoor Poisoning

- Rely on mixing function $m(G; g_t)$ to
 - Find to-be-replaced subgraph $g \in G$
 - Substitute g with g_t

- Inject trigger to not-target-label graphs $\mathcal{D}_{[y_{tar}]}$
- Train GNNs θ with poisoned set \mathcal{D}

GTA: Bi-level Optimization

- Upper level optimize trigger
 - $\circ \quad g_t^* = \arg\min_{g_t} l_{atk}(\theta^*(g_t), g_t)$
 - l_{atk} : difference between g_t -embedded graphs and $G \in D_{[y_{tar}]}$ through GNNs

Lower level – optimize GNNs

$$\circ \quad \theta^*(g_t) = \arg\min_{\theta} l_{ret}(\theta, g_t)$$

 \circ l_{ret} : loss of GNNs

Evaluation Settings

Multi-domain dataset

- Security-sensitive domains
- \circ $\,$ Biology and chemistry $\,$
- Social and transaction networks
- Manifold learning settings
 - Inductive (graph-level) & transductive (node-level) classification
 - Self-transfer & mutual-transfer learning
 - Graph-space (default) & input-space attacks

Dataset	Domain	Setting	# Samples
Fingerprint	Cybersecurity	Inductive, self-transfer	1.6k graphs
WinMal	Cybersecurity	Inductive, self-transfer	1.3k graphs
AIDS	Biochemistry	Inductive, mutual-transfer	2.0k graphs
Toxicant	Biochemistry	Inductive, mutual-transfer	10.3k graphs
AndroZoo	Cybersecurity	Inductive, input-space	0.2k graphs
Bitcoin	Transaction net	Transductive	5.6k nodes
Facebook	Social net	Transductive	12.5k nodes

Evaluation Settings (cont.)

- Representative GNNs
 - o GCN (Kipf & Welling, 2017)
 - GAT (Velickovic et al. 2018)
 - GraphSAGE (Hamilton et al. 2017)
- Self-variant baselines
 - **BL^I** : a universal trigger with fully connected topo. + adaptive features
 - *BL^{II}* : a universal trigger with adaptive topo. + adaptive features
- Comprehensive metrics
 - Effectiveness : attack success rate (ASR), etc.
 - Evasiveness : clean accuracy drop (CAD), etc.

Dataset	GNN	Benign Acc.
Fingerprint U	GAT	82.9%
WinMal U	GraphSAGE	86.5%
Toxicant \rightarrow AIDS	GCN	93.9%
AIDS \rightarrow Toxicant	GCN	95.4%
$ChEMBL \rightarrow AIDS$	GCN	90.4%
ChEMBL \rightarrow Toxicant	GCN	94.1%
AndroZoo (A.)	GCN	95.3%
AndroZoo (A.+F.)	GCN	98.1%
Bitcoin	GAT	96.3%
Facebook	GraphSAGE	83.8%

• Abbrevation: A. – only use topology; A.+F. – use both topology and raw features

Evaluations

Inductive settings

Sattings	BL ^I	BL ^{II}	GTA
Settings	ASR, CAD	ASR, CAD	ASR, CAD
Fingerprint U	84.4%, 1.9%	87.2%, 1.6%	100%, 0.9%
WinMal O	87.2%, 1.8%	94.4%, 1.2%	100%, 0.0%
Toxicant \rightarrow AIDS	89.4%, 1.7%	95.5%, 1.3%	98.0% , 1.4%
AIDS \rightarrow Toxicant	80.2%, 0.6%	85.5% , 0.0%	99.8% , 0.4%

Use the off-the-shelf GNNs

Sattingan	BL ^I	BL ^{II}	GTA
Settings	ASR, CAD	ASR, CAD	ASR, CAD
$ChEMBL \rightarrow AIDS$	92.0%, 1.1%	97.5%, 1.0%	99.0%, 1.2%
ChEMBL \rightarrow Toxicant	83.5%, 0.6%	86.0% , 0.0%	96.4%, 0.1%

Evaluations (cont.)

Transductive settings (node-level classification)

Sotting	BL ^I	BL ^{II}	GTA
Settings	ASR, CAD	ASR, CAD	ASR, CAD
Bitcoin	52.1%, 0.9%	68.6%, 1.2%	89.7%, 0.9%
Facebook	42.6%, 4.0%	59.6%, 2.9%	69.1%, 2.4%

Downstream model agnostic (different classifiers)

Classifiers	BL ^I	BL ^{II}	GTA
	ASR, CAD	ASR, CAD	ASR, CAD
Naïve Bayes	87.7%, 1.5%	92.4%, 0.9%	99.5%, 0.7%
Random Forest	85.8%, 0.9%	88.0%, 0.9%	90.1%, 0.6%
Gradient Boosting	82.5%, 0.6%	89.3% , 0.6%	94.0%, 0.6%

Input-space Case Study

- Input-space constraints
 - Transferable perturbations (triggers) from graph space
 - Not affect original functionalities of raw data samples
 - \circ $\,$ If possible, not incur observable semantic variations

Android Call Graph

(a) Original graph locality

(b) Trigger-embedded graph

GTA against Android Malware Detector (GNN-based)

Sattinga	Input-space GTA		Graph-space GTA	
Settings	ASR	CAD	ASR	CAD
Topology Only	94.3%	0.9%	97.2%	0.0%
Topology + Feature	96.2%	1.9%	100%	0.9%

Potential Countermeasures

- Data inspection: Randomized Smoothing (Zhang et al. 2020)
 - Subsample a (possibly trigger-embedded) graph G and generate $G_1, G_2, ..., G_n$
 - Take a majority voting among $G_1, G_2, ..., G_n$ as G's final classification results
 - \circ Adjust subsample ratio β on both of node set and feature dimensions
- Model inspection: Neural Cleanse (Wang et al. 2019)
 - For each label, learn a reversed trigger from a backdoored GNN
 - Get the perturbation scale (L_1 -norm) between the original graphs and the trigger-embedded
 - Use statistical approaches to measure which label has minimum perturbation scale
 - Consider different adaptiveness of reversed trigger (same as BL^{I} and BL^{II})

Summarizations

Graph-oriented

• GTA defines a trigger as a subgraph, including topo. structure and descriptive features

Input-tailored

• GTA generates triggers tailored to the characteristics of individual graphs

Downstream-model-agnostic

• GTA has no assumption of downstream model (used classifiers), leads to resistive trojaning attack

Attack-extensible

• GTA represents an attack framework on both inductive and transductive learning settings

Thank You !

For questions, feel free to contact

zxx5113@psu.edu

