
Integer is Enough: When Vertical Federated Learning Meets Rounding
Pengyu Qiu1,2, Yuwen Pu1, Yongchao Liu2* , Wenyan Liu1,2, Yun Yue2, Xiaowei Zhu2, Lichun Li2,

Jinbao Li3∗ , Shouling Ji1∗

1Zhejiang University
2Ant Group

3Qilu University of Technology
qiupys@zju.edu.cn, yw.pu@zju.edu.cn, yongchao.ly@antgroup.com, enxuan.lwy@antgroup.com, yueyun.yy@antgroup.com,

robert.zxw@antgroup.com, licun.llc@zmxy.com.cn, Lijinb@sdas.org, sji@zju.edu.cn

Abstract

Vertical Federated Learning (VFL) is a solution increasingly
used by companies with the same user group but differing
features, enabling them to collaboratively train a machine
learning model. VFL ensures that clients exchange interme-
diate results extracted by their local models, without sharing
raw data. However, in practice, VFL encounters several chal-
lenges, such as computational and communication overhead,
privacy leakage risk, and adversarial attack. Our study reveals
that the usage of floating-point (FP) numbers is a common
factor causing these issues, as they can be redundant and con-
tain too much information. To address this, we propose a new
architecture called rounding layer, which converts intermedi-
ate results to integers. Our theoretical analysis and empirical
results demonstrate the benefits of the rounding layer in re-
ducing computation and memory overhead, providing privacy
protection, preserving model performance, and mitigating ad-
versarial attacks. We hope this paper inspires further research
into novel architectures to address practical issues in VFL.

Introduction
Vertical Federated Learning (VFL) (Yang et al. 2019) has
become a popular solution for companies with the same
group of users but different features, enabling them to col-
laboratively train a model. In popular frameworks like FATE
(Liu et al. 2021), clients submit intermediate results ex-
tracted by their local models instead of raw data. The server
then aggregates these intermediate results for further compu-
tation and returns corresponding gradients for training. Ho-
momorphic Encryption (HE) (Zhang and Zhu 2020; Zhang
et al. 2018) is used in the framework to provide the con-
fidentiality of these intermediate results, which enables the
computation to be executed in an encrypted form. However,
despite the usage of HE, there are several challenges inher-
ent in this design.

Computational Overhead While HE provides privacy
protection, it can require significant computational resources
for training and inference, particularly when calculations in-
volve floating-point (FP) numbers. Indeed, HE cannot di-
rectly apply to calculations involving FP numbers. A naive
solution is that FP numbers must be converted to fixed-point

*Corresponding authors.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

numbers for further processing; while other solutions in-
volves complex designs (Moon and Lee 2020). These so-
lutions can consume additional time and resources.

Privacy Leakage While protecting intermediate results
from being accessed in plain text is crucial, research has
found that there are still privacy leakage risks (Luo et al.
2020; Qiu et al. 2022a). For instance, in a two-party sce-
nario, one curious party can reconstruct the other party’s
intermediate results using approximation methods, with the
knowledge of the server’s model and one sample’s poste-
riors. Empirical evidence has shown that the reconstructed
intermediate results are close to the original ones and can be
used to infer samples’ raw features and relations (He, Zhang,
and Lee 2019). These leakages of information reveal that
even intermediate results carry too much information.

Adversarial Attacks As VFL is a distributed system, the
presence of malicious parties is inevitable. This presents a
challenge for applications of VFL, as it is necessary to mit-
igate adversarial attacks when one party uploads crafted ad-
versarial features. Existing defense methods are available
but can result in additional costs. A key question is whether
there is a more economical way to achieve the same goal or
reduce the overall cost of mitigating adversarial attacks in
VFL. From the empirical study on the adversarial attacks,
we find that FP numbers may exacerbate the sensitivity of
the deep learning model, thereby making it more vulnerable
to adversarial attacks.

Based on the analysis above, we speculate that the us-
age of FP numbers may be a common factor contributing to
the issues encountered in VFL. To address these issues, we
propose a new architecture called the rounding layer, which
converts intermediate results to integers. This architecture
can be easily incorporated into existing VFL frameworks.
The benefits of this approach include:

1. Enabling HE calculations without transformation;
2. Compressing the intermediate results;
3. Expanding the robust boundary of samples.

The proposed architecture addresses the following ques-
tions:

• How to continue backward propagation through the
rounding layer?

To solve this problem, we adopt a Straight Through Es-
timator (Bengio, Léonard, and Courville 2013) that es-
timates the gradient of the rounding layer. Specifically,
the gradients passing through the rounding layer are set
identically in the backward propagation. This operation
enables the continuation of backward propagation, and
we provide an analysis in the following section.

• The trade-off of rounding the intermediate results
and the task’s performance.
To address this concern, we provide an error bound
for the rounding layer and empirically demonstrate the
performance of the classification task on three popular
datasets. In addition to compressing information, we an-
alyze the effect of the rounding operation on privacy pro-
tection from the perspective of differential privacy (DP)
(Dwork and Roth 2014).

• How to quantify the gains of the robust boundary?
To address this problem, we provide two analysis: First,
we evaluate the defense effectiveness against a Projected
Gradient Descent (PGD) attack (Madry et al. 2017). Sec-
ond, we calculate the statistical radius of samples from
different implementations using randomized smoothing
(Cohen, Rosenfeld, and Kolter 2019).

Our analysis and empirical results demonstrate that the
combination of the rounding layer in VFL can effectively
save computational and communication resources, compress
information, provide privacy protection, improve robust-
ness, and most importantly, preserve the main task’s perfor-
mance. The contributions of the paper are as follows:

• We investigate the existing open problems in VFL, and
identify one fundamental factor, FP numbers, that causes
the issues.

• We propose a new architecture, the rounding layer, that
supports converting intermediate results to integers in
VFL and demonstrate how to implement it.

• We analyze the effectiveness of the rounding layer in re-
ducing computational and memory overhead, as well as
its error bound and level of privacy protection.

• We empirically demonstrate the effectiveness of the
rounding operation in preserving consistency on feature
attribution and mitigating adversarial attacks.

Background
Vertical Federated Learning
Vertical federated learning (Liu et al. 2022; Yang et al. 2019)
is a trending solution for collaborative learning. It enables
each client to train a deep learning network, known as a lo-
cal model, on its local data first. The extracted intermediate
results are then sent to the server for aggregation and further
computation, such as calculating posteriors for classification
tasks. The updates for intermediate results are computed and
sent back to the corresponding clients, and this process con-
tinues until the performance converges. In this way, raw data
is kept locally, and only intermediate results and correspond-
ing updates are exchanged, providing privacy protection.

VFL allows each client the freedom to choose their local
models, making it flexible in application to different data
modalities. However, due to communication costs and the
size of the overlapped user space, current use cases mainly
involve two-party collaboration.

Homomorphic Encryption Homomorphic encryption
(Gentry 2009) is a popular technique used in Secure Multi-
party Computation that is also employed in VFL to ensure
the privacy of intermediate results. It enables aggregation
and computation to be encrypted.

Two streams of HE exist: Fully Homomorphic Encryp-
tion (FHE) and Partially Homomorphic Encryption (PHE).
FHE supports both addition and multiplication after encryp-
tion, while PHE supports only one of them. Although FHE
is more secure, PHE has an advantage in efficiency due to its
simpler mechanism. Therefore, in VFL, we choose Paillier
Homomorphic Encryption (Paillier 1999) as the implemen-
tation method, which is a popular implementation of PHE
that supports addition.

Since the foundation of Homomorphic Encryption is
number theory, it cannot be directly applied to real numbers.
A practical way to address this issue is to choose an appro-
priate precision and then transform real numbers to fixed-
point numbers for further processing.

Differential Privacy
Differential privacy is a widely used method in protecting
data privacy. Formally, it can be defined as follows.

Definition 1 A mechanism M is considered to be (ϵ, δ)-
differential privacy if, for all adjacent datasets D and D′,
and for all possible subsets of results S, the following holds:

P[M(D) ∈ S] ≤ eϵ ∗ P[M(D′) ∈ S] + δ,

where P denotes the probability, ϵ denotes the privacy bud-
get, and δ denotes the probability of failure.

In practice, the value of ϵ and δ should be as small as
possible to provide a strong protection of privacy. However,
the smaller the values, the larger the noise added to the data
byM, causing the degradation of the utility.

Adversarial Attack
Adversarial attack is one of the most concerning problems
in the field of machine learning security in recent years
(Szegedy et al. 2013; Madry et al. 2017; Goodfellow, Shlens,
and Szegedy 2015). To perform the adversarial attack, an
adversary needs to craft an perturbation for a target sample,
which aims to fool a specific deep learning model during
the inference phase. Formally, the objective function can be
formulated as follows:

min
x′∈Bγ(x)

L(x′, yt; θ), (1)

where Lmeasures the loss between the posteriors of the per-
turbed sample, x′, and the target class yt; θ is the parameter
of f , and Bγ(x) = {x′|||x′ − x||p ≤ γ} depicts a norm ball
at x, where ||·||p denotes the Lp norm distance and γ denotes
the radius. The term of Bγ(x) is to ensure that the perturba-
tion is stealthy to avoid human check.

Fast Gradient Sign Method (FGSM) (Goodfellow, Shlens,
and Szegedy 2015) proposed an efficient way to solve the
above equation by optimizing the perturbation as:

x′ = x− η ∗ sign(∇xL(x, yt; θ)), (2)

where η denotes the step size of the optimization, sign(·)
returns the sign of the values, and ∇ denotes the gradients.
However, with the accumulation of the optimization, x′ may
finally exceed the norm ball. PGD proposed a clipping oper-
ation at each step to keep the restriction.

Vertical Federated Learning with Rounding
Rounding Layer Design
We propose a new architecture, called the rounding layer,
to implement the rounding operation in VFL. There are two
key steps in the design of the rounding layer.

Forward According to IEEE Standard for Floating-Point
Arithmetic (IEEE 2019), there are five rounding rules. The
first two rules round to a nearest value, while the others are
called directed roundings:
• Rounding to Nearest:

1. Ties to even rounding: If the number falls midway, it
is rounded to the nearest value with an even least sig-
nificant digit.

2. Ties away from zero (or ties to away) rounding: If the
number falls midway, it is rounded to the nearest value
above (for positive numbers) or below (for negative
numbers).

• Directed Rounding:
1. Towards 0 rounding: directed rounding towards zero

(also known as truncation).
2. Towards +∞ rounding: directed rounding towards

positive infinity (also known as ceiling).
3. Towards −∞ rounding: directed rounding towards

negative infinity (also known as floor).
Based on the precision of the available rounding methods,

we choose rounding to nearest as our rounding operation.
We implement it with ceil(·) function, also denoted by ⌈·⌉,
in PyTorch (Paszke et al. 2019), which can be formulated as
follows:

round(x) = ⌈x− 0.5⌉. (3)
In the following, we use [·] to represent the round opera-

tion, round(·), for simplicity.

Backward Using the [·] creates the problem of gradient
vanishing. To address this issue, we introduce the STE to
estimate the gradients. Let L(·) denote the loss function, the
gradient of x is estimated by STE as follows:

∂L(x)
∂x

≃ ∂L(x)
∂[x]

. (4)

Equation (4) means that, during the backward process, the
gradients of the corresponding intermediate results will be
set exactly the same as the gradients calculated on their con-
versions. This enables the training of deep learning models
in VFL to continue.

Algorithm 1: Rounding in Vertical Federated Learning

Require: clients’ bottom models {fi}Ni=1, server’s top
model ftop.

Ensure: trained {fi}Ni=1, ftop for inference.
1: for each epoch do
2: for each batch (X,Y) do
3: During forward process:
4: for At each Clienti do
5: Embi ← fi(Xi)
6: Vi ← [Embi]
7: Send Vi to the server
8: end for
9: At the server:

10: V← concate({Vi}Ni=1)
11: L ← cross entropy(ftop(V),Y)
12: During backward process:
13: At the server:
14: for each Vi do
15: calculate ∂L

∂Vi

16: send ∂L
∂Vi

to the corresponding client
17: end for
18: for At each Clienti do
19: ∂L

∂Embi
← ∂L

∂Vi

20: update the following parameters of fi
21: end for
22: end for
23: end for

Algorithm 1 summarizes the process. During each epoch
of training, N clients first extract intermediate results,
Embi, from their bottom model, fi, of raw data Xi in the
forward process. Then, the rounding layer converts Embi

to integers by [·]. The conversions are sent to the server,
who aggregates these conversions and uses ftop to do the fi-
nal computation. During backward process, the server calcu-
lates each Vi’s gradients and send them back to correspond-
ing clients. Using STE, each client passes the received gra-
dients through the rounding layer without modification and
updates the parameters of their bottom models.

Computation and Memory Efficiency

Since the intermediate results are represented as integers,
there is no need of extra conversion cost from the FP type
to an Int type in order to employ Paillier Homomorphic En-
cryption. Therefore, comparing to the solution of conversion
to fixed-point numbers, the rounding operation does not in-
crease the time cost. In addition, according to the findings
(Abdel-Aziz et al. 2021), the Int type can further accelerate
computation, which helps improve training efficiency.

In PyTorch’s default setting, 32 bits are used to store a
floating-point type tensor, while only 8 bits are used for an
integer type tensor. As a result, the memory compression
theoretically achieves a 4× reduction, which also saves con-
siderable band cost during the communication phase.

Error Bound
Although we have solved the challenge of gradient vanish-
ing caused by the rounding operation, it is still a question
whether such a design can promise a close performance.
This section formally explores the error bound for local op-
tima after rounding. Specifically, we present the following
theorem for the error bound.

Theorem 1 Given x = z + r, where z ∈ Zd, and r ∈
[− 1

2 ,
1
2]

d. Assume that for a specific class, the top model’s
prediction can be approximated by a 2-times differential
function g : Rd → R. Then, let ∆ = g(x)− g(z), we have:

||∆||2 ≤
∑

||α||1=1

1

2α
||D

αg(z)
α!

||2 +
∑

||β||1=2

1

2β
Ṙβ(z),

where α,β ∈ Nd are multi-index notation, ||α||1 =

α1 + · · · + αd, and α! = α1! · · ·αd!; Dαg = ∂||α||1g

∂x
α1
1 ···∂xαd

d

;

Ṙβ(z) = 1
β! max||α||1=||β||1 maxy∈B 1

2
(z) ||Dαg(y)||, and

B 1
2
(z) denotes the norm ball of z with the radius of 1

2 .

Proof With the notation and assumption of Theorem 1, we
can reformulate g(x) according to the Multivariate Version
of Taylor’s Theorem (Wheeden and Zygmund 1977) as fol-
lows:

g(x) =
∑

||α||1≤1

Dαg(z)
α!

· rα +
∑

||β||1=2

Rβ(x) · rβ,

Rβ(x) =
||β||1
β!

∫ 1

0

(1− t)||β||1−1Dβg(z + t(x− z))dt,

(5)
where t is an auxiliary variable. Due to the continuity of
second order partial derivatives, we can obtain the uniform
estimates:

||Rβ(x)||2 ≤
1

β!
max

||α||1=||β||1
max

y∈B 1
2
(z)
||Dαg(y)||. (6)

Let ∆ = g(x)−g(z), we have the error bound after rounding
as follows:

||∆||2 = ||
∑

||α||1=1

Dαg(z)
α!

· rα +
∑

||β||1=2

Rβ(x) · rβ||2

≤
∑

||α||1=1

||D
αg(z)
α!

||2 · ||rα||2 +
∑

||β||1=2

||Rβ(x)||2 · ||rβ||2

≤
∑

||α||1=1

1

2α
||D

αg(z)
α!

||2 +
∑

||β||1=2

1

2β
||Rβ(x)||2

≤
∑

||α||1=1

1

2α
||D

αg(z)
α!

||2 +
∑

||β||1=2

1

2β
Ṙβ(z).

(7)
where Ṙβ(z) = 1

β! max||α||1=||β||1 maxy∈B 1
2
(z) ||Dαg(y)||.

Note that the above derivation is a theoretical guarantee.
In the following section, we further illustrate the precision
preserved by the rounding layer through evaluation on the
performance of the classification tasks.

Privacy Measurement
This section measures the privacy protection provided by the
rounding layer. As a popular technique, DP can provide a
formal privacy guarantee in terms of privacy budget ϵ and
failure probability δ. A common way to implement (ϵ, δ)-
DP is adding Laplace noises to the output of a function f ,
such as:

M(x) = f(x) + Lap(
s

ϵ
), (8)

where s denotes the sensitivity of ceil(·), and Lap(sϵ) de-
notes sampling from Laplace distribution with center 0 and
scale s

ϵ .
Following the derivation in (Pham et al. 2022), we can

also add a perturbation to the rounded embeddings for pri-
vacy analysis. LetMr denote the mechanism of the round-
ing layer and M denote the mechanism of adding Laplace
noises. Then, we can formulateMr as follows:

Mr(x) = [M(x)] = [[x] + Lap(
1

ϵ
)], (9)

where the sensitivity of f(x) = [x] is 1. The first equation is
because, from the server’s perspective, it always receives the
embeddings in integer format. The second equation follows
the analysis of DP.

If ||Lap(1ϵ)||2 < 1
2 , thenMr(x) = [x]. It means that the

rounding operation naturally tolerates a small latent noise.
Let cdf(·) denote the cumulative distribution function of
Laplace, we have:

P[|Lap(1
ϵ
)| < 1

2
] = [cdf(

1

2
)− cdf(−1

2
)]

= 1− exp(− ϵ

2
).

(10)

Regarding the Definition 1, the rounding operation can
provide ϵ-DP with probability 1 − exp(− ϵ

2). This means
the rounding operation naturally provides (ϵ, δ)-DP with
δ = exp(− ϵ

2), and the lower bound of ϵ is−2log(δ). There-
fore, the rounding operation could provide better privacy
compared to the implementation without conversion.

Experiments and Results
Experimental Setup
Datasets We involve the following datasets in the study:
• MNIST (Lecun et al. 1998) is a widely used benchmark,

which are handwritten digits with a training set of 60,000
examples, and a test set of 10,000 examples.

• Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017) is a
newly proposed dataset, which contains images of differ-
ent types of clothes, with a training set of 60,000 exam-
ples, and a test set of 10,000 examples.

• CIFAR10 (Krizhevsky, Hinton et al. 2009) is also a well-
known image dataset, which consists of 60,000 colour
images.

The two-party VFL is considered as the primary case in
evaluation, as it is a more common case than the multi-party
scenario in practice. To simulate VFL scenario, if the two
parties have the same number of features, the image will be
split in the middle (Fu et al. 2022).

Models There are two parts of models in VFL as follows:
• Bottom Model uses pretrained ResNet (He et al. 2016) to

extract intermediate results. We modify the input and the
output layers to suit the VFL training, including different
channels of the images and the dimensional size of the
intermediate results. The default size is set at 16.

• Top Model is a customized Multilayer Perceptron (MLP)
(Ruppert 2004). Each layer is a composition of one linear
layer and one activation layer, i.e., ReLU (Agarap 2018).
By default the depth of the top model is set as 3.

The training details are set as follows: training epochs of
30, batch size of 256, learning rate of 10−3, and weight de-
cay of 5 × 10−4. Adam (Kingma and Ba 2017) is the opti-
mizer used by default.

Baselines B-SL (Pham et al. 2022) and HashVFL (Qiu
et al. 2022b) are two related works that utilized deep hash-
ing to binarize the intermediate results in VFL. Both studies
demonstrated that binarization can lead to acceleration and
privacy improvements.

However, the use of deep hashing can result in signifi-
cant information loss, raising questions about the accuracy
preservation and interpretability of their methods compared
to ours. The former question is related to the original mo-
tivation behind VFL, while the latter is concerned with the
rewards of providing features in VFL.

Therefore, we choose the binarizing operation as one
baseline, which is denoted by ‘Binary’. Additionally, we use
the original framework that without extra modification as the
baseline, denoted by ‘Base’.

Performance of Classification Tasks
We conduct our experiments on two distinct parameters,
namely dimensional size and feature ratio. The dimensional
size refers to the size of intermediate results in VFL, while
the feature ratio denotes the proportion of features con-
tributed by each client, relative to the total number of fea-
tures. When it comes to image data, we use the number of
columns to indicate the number of features.

Dimensional Size Analysis The accuracy results obtained
on different datasets with varying dimensional sizes are
summarized in Table 1. We have transformed the dimen-
sional size by a factor of 2, ranging from 8 to 128. The fea-
ture ratio is fixed at 50% for all clients.

Our results indicate that the rounding layer does not lead
to significant accuracy loss in classification tasks. In some
cases, our proposed architecture even outperforms the base
architecture. This could be due to redundancy in FP num-
bers, which carry more information than clustering, causing
confusion in classification.

However, the binary transformation results in a reduction
in accuracy, particularly on the CIFAR10 dataset, where the
accuracy drops from 75.34% to 70.07% when the dimen-
sional size is 16. This suggests that our proposed transfor-
mation better preserves the performance of the main task.

Furthermore, our results show that the dimensional size
does not appear to substantially affect the performance. We
speculate that this is because the bottom models, ResNet,

Dataset Arch. Dimensional Size
d=8 d=16 d=32 d=64 d=128

MNIST
Base 98.41 98.77 98.33 98.50 98.70

Binary 97.66 98.57 98.28 97.91 98.34
Round 98.43 98.66 98.39 98.66 98.31

Fashion
Base 90.88 90.87 89.52 90.75 90.29

Binary 90.52 89.69 90.30 89.44 89.30
Round 90.84 90.91 90.70 90.66 90.52

CIFAR10
Base 74.59 75.34 75.76 75.15 75.04

Binary 70.13 70.07 69.41 71.87 70.06
Round 73.41 75.67 74.74 75.42 75.33

Table 1: Comparison with different dimensional sizes.

Dataset Arch. Feature Ratio
r=0.1 r=0.2 r=0.3 r=0.4 r=0.5

MNIST
Base 99.02 99.13 98.96 98.77 98.77

Binary 98.85 99.11 98.93 98.61 98.57
Round 98.83 99.06 99.13 98.62 98.66

Fashion
Base 91.85 91.51 91.37 90.88 90.87

Binary 91.35 91.17 91.06 90.95 89.69
Round 91.67 91.78 91.59 91.83 90.91

CIFAR10
Base 81.79 79.82 76.79 75.27 75.34

Binary 79.32 78.51 75.39 74.01 70.07
Round 80.92 78.82 77.19 74.97 75.67

Table 2: Comparison with different feature ratios.

are proficient at extracting valid information. This finding
points to an interesting application scenario for VFL, which
involves combining large models with multiple modalities
for joint modeling.

Feature Ratio Analysis The impact of feature ratio on
classification task performance is summarized in Table 2.
We vary the feature ratio of one party from 10% to 50% to
observe the differences.

Our results show that the proposed architecture effectively
preserves the accuracy of the main task. However, the binary
operation loses a considerable amount of information, no-
tably on the CIFAR10 dataset, where the accuracy decreases
by 2.47% with a feature ratio of 10%, and 5.27% with a fea-
ture ratio of 50%.

Another interesting finding is that when one party has a
higher proportion of complete features, i.e., a feature ratio
of 10% in this case, the accuracy is higher than when each
party has less complete features, i.e., a feature ratio of 50%.
This is plausible as incomplete features, such as a split dog
face, may have weak signals in extracted intermediate re-
sults, with the background having a more significant impact.

Feature Attribution
An essential aspect of applying VFL is to interpret the im-
portance of features (Wang 2019). This analysis relates to
the interests of each party, particularly the value assessment
of the provided features.

It is expected that binarization will inevitably affect the
distribution of importance, while rounding should have a
lesser impact on this distribution. In the following, we verify
this speculation through experiments.

Attribution Methods Before the experiments, we intro-
duce three popular attribution methods involved as follows:
• Integrated Gradients. Integrated Gradients (Sundarara-

jan, Taly, and Yan 2017) represents the integral of gra-
dients with respect to inputs along the path from a given
baseline to input. It can be formulated as follows:

IGi(x) := (xi − x′
i)×

∫ 1

t=0

∂f(x′ + t(x− x′))

∂xi
dt,

(11)
where i denotes the i-th dimension of input x. The in-
tegral can be approximated by Riemann Sum or Gauss
Legendre quadrature rule.

• DeepLIFT. DeepLIFT (Shrikumar, Greenside, and Kun-
daje 2017) is also a back-propagation based approach
that attributes a change to inputs based on the differences
between the inputs and corresponding baselines. Specifi-
cally, DeepLIFT uses the concept of multipliers to mea-
sure specific neurons for the difference in outputs. For-
mally, it can be described as follows:

m∆x∆n :=
C∆x∆n

∆x
, (12)

where ∆x denotes the difference between the input x and
the reference, ∆n represents the difference between the
target neuron n and the reference, and C accumulates the
contribution of ∆x to ∆n.

• Feature Ablation. Feature Ablation (Kokhlikyan et al.
2020) is a perturbation based approach to compute at-
tribution, involving replacing each input feature with a
given reference value (e.g., 0), and computing the differ-
ence in output. For example, for images, one can group
an entire segment or region and ablate it, measuring the
importance of the segment.

We use the open source library, Captum (Kokhlikyan et al.
2020), to implement the aforementioned methods, which of-
fers excellent toolkits for explaining deep learning models.

Evaluation Metrics In VFL, a practical and equitable
method to assess each party’s contribution is to measure
the importance of their submitted intermediate results, pre-
sented as an array that represents the significance of each
dimension. We propose the following metrics for evaluation:
• Euclidean Distance, which is used to compute the numer-

ical absolute error of the baseline’s interpretations and
processed results.

• Correlation Distance, which is used to measure the sim-
ilarity between the baseline’s interpretations and others.

• Kendall’s τ (Kendall 1938), which is used to measure the
rank correspondence between two interpretations, since
preserving ranking is also important.

We use the open source library, SciPy (Virtanen et al.
2020), to implement the computation of different metrics.

Consistency Evaluation To compare the methods, we
keep the dimensional size at 16, feature ratio at 50%, and
target class at 0 (e.g., digit ‘0’ in MNIST). The results are
shown in Table 3.

Our results indicate that the rounding architecture pre-
serves consistency better than the binary design for all three
methods. For example, on the CIFAR10, our design achieves
an absolute error of 0.17, correlation distance of 0.19, and
Kendall’s τ of 0.47 with a p-Value of 0.0001, while the bi-
nary design obtains an Euclidean distance of 0.34, correla-
tion distance of 1.09, and Kendall’s τ of -0.13 with a p-Value
of 0.31. Note that for the first two metrics, lower values are
better, while for Kendall’s τ , higher values are better, and
small p-Values are expected.

Our comparison of feature attribution consistency demon-
strates that our architecture has a small absolute error and
close correlation with the original one, and the ranking of
importance for different dimensions can be maintained.

Mitigating Adversarial Attack
Threat Model In our evaluation, we assume the strongest
possible adversary who possesses complete knowledge of
the submitted intermediate results and the parameters of the
top model. Thus, the adversary can conduct a white-box at-
tack. The adversary’s objective is to change the prediction of
a target sample to the desired class, which is fixed as class 0
in the following experiments.

We use PGD attack in evaluation, which can be described
as follows:

xm = xm−1 − η ∗ sign(∇xm−1
L(xm−1, yt; θ))

ϕm = clip(xm − x0, ω)
xm = x0 + ϕm,

(13)

where x0 denotes the original intermediate results, xm de-
notes the perturbed adversarial results at m-th optimization,
and clip(xm − x0, ω) denotes the restriction that clips the
perturbation ϕm to a given threshold, which is (−ω, ω).

Attack Success Rate Reduction We evaluate the secu-
rity of different architectures under varying combinations of
threshold ω and step size s. The evaluation comprises two
aspects: the preserved accuracy and the attack success rate
with perturbation. The difference between these two aspects
is that the perturbed intermediate results may be misclas-
sified but not predicted to the desired class (sometimes re-
ferred to as untargeted and targeted attacks in literature). We
set the threshold as 1 and 2, respectively, with the step size
set at 0.1 and 1.0. We randomly select 100 samples for eval-
uation. Table 4 summarizes the results.

Note that during the adversarial attack, the perturbed in-
termediate results must still remain in the binary or integer
form. Therefore, when the step size is 0.1, the perturbation
cannot change the value of the intermediate results. The re-
sults in Table 4 confirm this point, where the preserved accu-
racy remains the same, and the attack success rate is 0 with
binary and rounding. However, if the step size is increased to
1.0, all architectures struggle to thoroughly mitigate the ad-
versarial attack, particularly when the threshold is 2. Never-
theless, our rounding operation is more robust in preserving
accuracy and defending against attacks, as shown in Table 4.

An interesting phenomenon is that as the step size ex-
pands, the attack success rate drops in the base architecture.

Dataset Arch.

Methods
Integrated Gradients DeepLIFT Feature Ablation

Euc. Cor. Kendall’s τ Euc. Cor. Kendall’s τ Euc. Cor. Kendall’s τ
Stats p-Value Stats p-Value Stats p-Value

MNIST Binary 0.2646 0.8939 0.0282 0.8344 0.2853 0.8069 0.0887 0.4887 0.2863 0.7793 0.1210 0.3415
Round 0.1048 0.0849 0.5726 0.0001 0.1860 0.3191 0.3710 0.0025 0.1886 0.2992 0.3750 0.0022

Fashion Binary 0.2952 0.9072 0.0968 0.4491 0.2853 0.8069 0.0887 0.4887 0.2863 0.7793 0.1210 0.3415
Round 0.1552 0.1925 0.5847 0.0001 0.1860 0.3191 0.3710 0.0025 0.1886 0.2992 0.3750 0.0022

CIFAR10 Binary 0.3394 1.0851 -0.1290 0.3096 0.2952 0.9408 -0.0605 0.6408 0.3265 0.9771 -0.0847 0.5092
Round 0.1702 0.1942 0.4718 0.0001 0.1644 0.2926 0.3427 0.0055 0.1688 0.2503 0.3790 0.0020

Table 3: Evaluation results for feature attribution consistency. ‘Euc.’ represents the Euclidean distance, while ‘Cor.’ represents
the Correlation distance. Smaller distances indicate better results. For Kendall’s τ , higher stats indicate better performance.

We speculate that this is because a large step size also results
in a loss of precision in generating optimum perturbations.

Overall, our rounding operation demonstrates stronger
ability to mitigate adversarial attacks than the baselines and
the binary architecture. To quantify the improvement, we
further present the analysis of the certified robust radius in
the following section.

Certified Robust Radius There are various methods
available for quantifying the adversarial robustness of deep
learning models. To account for generalization, we use ran-
domized smoothing (Cohen, Rosenfeld, and Kolter 2019) to
compute the certified robustness radius for samples, which
is independent of any specific model.

Specifically, randomized smoothing method aims to con-
struct a “smoothed” classifier g from the base classifier
f : Rd → Y . When queried at x, g returns whichever class
f is most likely to return when x is perturbed by isotropic
Gaussian noise:

g(x) = argmax
y∈Y

P(f(x + ξ) = y), (14)

where ξ ∼ N (0, σ2I). Since it is not possible to exactly
evaluate the prediction of g around x, Monte Carlo algo-
rithms is used for assessment.

Theorem 2 Let f : Rd → Y be any deterministic or ran-
dom function, and let ξ ∼ N (0, σ2I). Let g be defined as the
smoothed classifier. Suppose yA ∈ Y and pA, pB ∈ [0, 1]
satisfy:

P(f(x + ξ) = yA) ≥ pA ≥ pB ≥ max
y ̸=yA

P(f(x + ξ) = y).

Then, g(x + ξ) = yA for all ||ξ||2 < R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)).

According to Theorem 2 (Cohen, Rosenfeld, and Kolter
2019), we can get that g is robust around x within the ℓ2
radius R = σ

2 (Φ
−1(pA) − Φ−1(pB)), where Φ−1 is the

inverse of the standard Gaussian CDF, pA denotes the prob-
ability of the most probable class yA is returned, and pB
denotes the other classes. The result also holds if we replace
pA with a lower bound pA and pB with an upper bound pB .

We randomly select 1,000 samples and conduct 106 sam-
ples for each to assess the radius. The variance σ is fixed at
1. Table 5 summarizes the certified robustness radius results

for different architectures. Experimental results demonstrate
that the rounding operation enlarges the radius of robustness
around each x.

Additionally, we observe that if the perturbations exceed
the restriction, binarization becomes weaker in mitigating
adversarial attacks than the base architecture. This phe-
nomenon is consistent with the results presented in Table 4.
This may be the information loss caused by binarization re-
sults in the value of each bit being vital to the prediction, and
any changes can significantly affect the final outcome.

Discussion
Combination of Integerized Gradients This paper ad-
dresses the challenges encountered during the forward pro-
cess in VFL. However, there are still risks of leakage during
the backward process. For example, Zhu et al. (Zhu, Liu, and
Han 2019) revealed that the gradients could be utilized for
reconstruction attacks. Concerning the efficacy of the round-
ing operation and the feasibility of gradient discretization
(Dryden et al. 2016) and sparsification (Aji and Heafield
2017), we speculate that integerization could be a promis-
ing approach to address this issue.

Specialized Integer Tensor Operations Although half
FP and binary values have been proven efficient with spe-
cialized operation designs, we believe that specialized oper-
ations for integer tensors could also accelerate training and
inference in VFL. If the combination of Integerized Gradi-
ents is proven to be effective, this attempt will be valuable.

Conclusion
This paper proposes a novel architecture to tackle the chal-
lenges in VFL, including computational overhead, privacy
protection, and security concerns arising from adversarial at-
tacks. We have theoretically analyzed the advantages of the
rounding layer in terms of computation efficiency and mem-
ory reduction, rounding error bounds, and privacy protection
from a DP perspective. Empirical studies indicate that the
proposed rounding layer can preserve the model’s perfor-
mance, maintain consistency with the interpretation of the
original framework, and mitigate adversarial attacks.

Acknowledgments
This work is supported by Ant Group through Ant Research
Intern Program and also partly supported by the National

Dataset Threshold ω Step Size s
Accuracy Preserved Accuracy Attack Success Rate

Base Binary Round Base Binary Round Base Binary Round

MNIST
1 0.1 97% 98% 97% 15% 98% 97% 85% 0 0

1.0 97% 98% 97% 14% 22% 56% 74% 64% 43%

2 0.1 97% 98% 97% 0 98% 97% 100% 0 0
1.0 97% 98% 97% 0 0 0 100% 100% 96%

Fashion
1 0.1 89% 83% 92% 73% 83% 92% 16% 0 0

1.0 89% 83% 92% 77% 40% 83% 15% 42% 10%

2 0.1 89% 83% 92% 12% 83% 92% 86% 0 0
1.0 89% 83% 92% 12% 0 14% 82% 94% 83%

CIFAR10
1 0.1 79% 69% 77% 22% 69% 77% 76% 0 0

1.0 79% 69% 77% 28% 9% 59% 66% 85% 25%

2 0.1 79% 69% 77% 2% 69% 77% 98% 0 0
1.0 79% 69% 77% 3% 0 9% 95% 64% 43%

Table 4: Attack success rate evaluation with different combinations of threshold and step size.

Dataset
Architecture

Base Binary Round
Mean Std. Mean Std. Mean Std.

MNIST 2.20 0.70 2.15 0.64 2.96 1.15
Fashion 4.11 1.81 1.66 0.68 4.28 1.85

CIFAR10 1.92 1.70 1.12 0.81 3.01 2.17

Table 5: Certified robust radius.

Key Research and Development Program of China under
No. 2022YFB3102100 and NSFC under No. 62172243 and
62102360.

References
Abdel-Aziz, H.; Shafiee, A.; Shin, J. H.; Pedram, A.;
and Hassoun, J. 2021. Rethinking Floating Point Over-
heads for Mixed Precision DNN Accelerators. ArXiv,
abs/2101.11748.
Agarap, A. F. 2018. Deep Learning using Rectified Linear
Units (ReLU). ArXiv, abs/1803.08375.
Aji, A. F.; and Heafield, K. 2017. Sparse Communication for
Distributed Gradient Descent. In Conference on Empirical
Methods in Natural Language Processing.
Bengio, Y.; Léonard, N.; and Courville, A. C. 2013. Estimat-
ing or Propagating Gradients Through Stochastic Neurons
for Conditional Computation. ArXiv, abs/1308.3432.
Cohen, J. M.; Rosenfeld, E.; and Kolter, J. Z. 2019. Certi-
fied Adversarial Robustness via Randomized Smoothing. In
International Conference on Machine Learning.
Dryden, N.; Moon, T.; Jacobs, S. A.; and Essen, B. C. V.
2016. Communication Quantization for Data-Parallel Train-
ing of Deep Neural Networks. 2016 2nd Workshop on Ma-
chine Learning in HPC Environments (MLHPC), 1–8.
Dwork, C.; and Roth, A. 2014. The Algorithmic Founda-
tions of Differential Privacy. Found. Trends Theor. Comput.
Sci., 9: 211–407.
Fu, C.; Zhang, X.; Ji, S.; Chen, J.; Wu, J.; Guo, S.; Zhou,
J.; Liu, A. X.; and Wang, T. 2022. Label Inference Attacks

Against Vertical Federated Learning. In USENIX Security
Symposium.
Gentry, C. 2009. Fully homomorphic encryption using ideal
lattices. In Symposium on the Theory of Computing.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015.
Explaining and Harnessing Adversarial Examples.
arXiv:1412.6572.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 770–
778.
He, Z.; Zhang, T.; and Lee, R. B. 2019. Model inversion
attacks against collaborative inference. Proceedings of the
35th Annual Computer Security Applications Conference.
IEEE. 2019. IEEE Standard for Floating-Point Arithmetic.
IEEE Std 754-2019 (Revision of IEEE 754-2008), 1–84.
Kendall, M. G. 1938. A NEW MEASURE OF RANK COR-
RELATION. Biometrika, 30: 81–93.
Kingma, D. P.; and Ba, J. 2017. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980.
Kokhlikyan, N.; Miglani, V.; Martin, M.; Wang, E.; Alsal-
lakh, B.; Reynolds, J.; Melnikov, A.; Kliushkina, N.; Araya,
C.; Yan, S.; and Reblitz-Richardson, O. 2020. Captum: A
unified and generic model interpretability library for Py-
Torch. arXiv:2009.07896.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multi-
ple layers of features from tiny images. Technical report,
Toronto, ON, Canada.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
Liu, Y.; Fan, T.; Chen, T.; Xu, Q.; and Yang, Q. 2021. Fate:
An industrial grade platform for collaborative learning with
data protection. The Journal of Machine Learning Research,
22(1): 10320–10325.
Liu, Y.; Kang, Y.; Zou, T.; Pu, Y.; He, Y.; Ye, X.; Ouyang, Y.;
Zhang, Y.; and Yang, Q. 2022. Vertical Federated Learning.
ArXiv, abs/2211.12814.

Luo, X.; Wu, Y.; Xiao, X.; and Ooi, B. C. 2020. Feature
Inference Attack on Model Predictions in Vertical Feder-
ated Learning. 2021 IEEE 37th International Conference
on Data Engineering (ICDE), 181–192.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards Deep Learning Models Resistant
to Adversarial Attacks. ArXiv, abs/1706.06083.
Moon, S.; and Lee, Y. 2020. An Efficient Encrypted
Floating-Point Representation Using HEAAN and TFHE.
Secur. Commun. Networks, 2020: 1250295:1–1250295:18.
Paillier, P. 1999. Public-Key Cryptosystems Based on Com-
posite Degree Residuosity Classes. In International Confer-
ence on the Theory and Application of Cryptographic Tech-
niques.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Köpf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Proceedings of the
33rd International Conference on Neural Information Pro-
cessing Systems. Red Hook, NY, USA: Curran Associates
Inc.
Pham, N. D.; Abuadbba, A.; Gao, Y.; Phan, K. T.; and Chil-
amkurti, N. K. 2022. Binarizing Split Learning for Data
Privacy Enhancement and Computation Reduction. IEEE
Transactions on Information Forensics and Security, 18:
3088–3100.
Qiu, P.; Zhang, X.; Ji, S.; Du, T.; Pu, Y.; Zhou, J.; and Wang,
T. 2022a. Your Labels Are Selling You Out: Relation Leaks
in Vertical Federated Learning. IEEE Transactions on De-
pendable and Secure Computing.
Qiu, P.; Zhang, X.; Ji, S.; Pu, Y.; and Wang, T. 2022b.
All You Need Is Hashing: Defending Against Data Recon-
struction Attack in Vertical Federated Learning. ArXiv,
abs/2212.00325.
Ruppert, D. 2004. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Journal of the
American Statistical Association, 99: 567 – 567.
Shrikumar, A.; Greenside, P.; and Kundaje, A. 2017. Learn-
ing Important Features Through Propagating Activation Dif-
ferences. In International Conference on Machine Learning.
Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic
Attribution for Deep Networks. In International Conference
on Machine Learning.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I. J.; and Fergus, R. 2013. Intriguing prop-
erties of neural networks. CoRR, abs/1312.6199.
Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland,
M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.;
Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.;
Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.;
Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng,
Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.;
Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.;

Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mul-
bregt, P.; and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python.
Nature Methods, 17: 261–272.
Wang, G. 2019. Interpret Federated Learning with Shapley
Values. ArXiv, abs/1905.04519.
Wheeden, R. L.; and Zygmund, A. 1977. Measure and in-
tegral : an introduction to real analysis, chapter 1. CRC
Press.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv:1708.07747.
Yang, Q.; Liu, Y.; Chen, T.; and Tong, Y. 2019. Federated
machine learning: Concept and applications. ACM Transac-
tions on Intelligent Systems and Technology (TIST), 10(2):
1–19.
Zhang, Q.; Wang, C.; Wu, H.; Xin, C.; and Phuong, T. V.
2018. GELU-Net: A Globally Encrypted, Locally Unen-
crypted Deep Neural Network for Privacy-Preserved Learn-
ing. In IJCAI, 3933–3939.
Zhang, Y.; and Zhu, H. 2020. Additively homomorphi-
cal encryption based deep neural network for asymmet-
rically collaborative machine learning. arXiv preprint
arXiv:2007.06849.
Zhu, L.; Liu, Z.; and Han, S. 2019. Deep Leakage from
Gradients. In Neural Information Processing Systems.

