
1

Hijack Vertical Federated Learning Models As
One Party

Pengyu Qiu, Xuhong Zhang�, Shouling Ji, Changjiang Li, Yuwen Pu�, Xing Yang, Ting Wang

Abstract—Vertical Federated Learning (VFL) is an emerging paradigm that enables collaborators to build machine learning models
together in a distributed fashion. However, the security of the VFL model remains underexplored, particularly regarding the Byzantine
Generals Problem (BGP), which is a well-known issue in distributed systems. This paper focuses on revealing the threat of BGP in VFL
systems. Specifically, we propose two attacks, the replay attack and the generation attack, to evaluate the vulnerability of VFL when
there is only one malicious party. The goal of the adversary is to hijack the VFL model to give desired predictions. Moreover,
considering the uneven distribution of importance among parties, we combine data poisoning with the aforementioned attacks to
explore whether they can bypass the situation where the adversary has few features. The evaluation results demonstrate the
effectiveness of our attacks. For instance, the adversary holding only 10% of the features can achieve an attack success rate close to
90% on a binary classifier. Additionally, we evaluate potential countermeasures, and the experimental results show that their defense
capability is limited and usually at the cost of performance loss of the VFL task. Our work highlights the need for advanced defenses to
protect the prediction results of a VFL model and calls for more exploration of VFL’s security issues.

Index Terms—Vertical Federated Learning, Byzantine Generals Problem, Adversarial Attack, Poisoning Attack.

✦

1 INTRODUCTION

The increasing importance of data as a valuable resource
has brought attention to the issues of illegal data collection
and data breaches, as highlighted in recent studies [34],
[30], [17], [2]. This has led to a growing consensus on the
need for personal data protection, and governments have
implemented regulations such as the GDPR [79] and CCPA
[37] to define the boundaries for data collection, sharing,
and transactions. While these measures serve to prevent
malicious collection of personal data by companies, they
also limit the ability of companies to leverage data for
business growth.

The challenge of balancing personal data protection with
the use of data for business growth can be addressed by
Vertical Federated Learning (VFL). VFL is specifically de-
signed to address situations where participants hold the
same samples but have different features. For example, in
a collaboration between a bank and a financial company,
as depicted in Fig. 1, the bank and the financial company
may have a group of common users, but possess different

• P. Qiu, S. Ji, Y. Pu are with the College of Computer Science and
Technology at Zhejiang University, Hangzhou, Zhejiang, 310027, China.
E-mail:{qiupys, sji, yw.pu}@zju.edu.cn.

• X. Zhang is with the School of Software Technology at
Zhejiang University, Ningbo, Zhejiang, 315048, China. E-mail:
zhangxuhong@zju.edu.cn.

• X. Zhang and Y. Pu are also the corresponding authors of this paper.

• X. Yang is with the Hefei Interdisciplinary Center, National
University of Defense Technology, Hefei, Anhui, 230037, China. E-
mail: yangxing17@nudt.edu.cn.

• C. Li, T. Wang are with the College of Information Science and Technology
at Pennsylvania State University, State College, PA, 16801, United States.
E-mail: changjiang.li@psu.edu, inbox.ting@gmail.com.

Sample ID Feature 1 Feature 2
01
32
13
44

Sample ID Feature 3 Feature 4 Label
01
32
13
55

Participant A Participant B

Fig. 1. An illustration of VFL is presented. In this scenario, Participant A,
a financial company, holds features 1 and 2, while Participant B, a bank,
possesses features 3 and 4. The two parties collaborate to train a model
for predicting loan approval.

features for those users, such as savings and loan records
in the bank and stock and security information in the
financial company. When the bank seeks to improve its loan
evaluation risk control model, incorporating features from
the financial company becomes a promising choice. VFL
offers an effective solution for the bank and the financial
company to train a model together.

Several frameworks, including FATE [49], PySyft [92],
TF Encrypted [13], and CrypTen [38], have been developed
to support VFL. In practice, the benefits of VFL have been
demonstrated in various studies such as [50], [84], [85].
However, the privacy and security analysis of VFL remains
an under-explored area, as highlighted in recent research
[18], [65], [55], [86].

The Byzantine Generals Problem (BGP) [42] is a well-
known issue in the field of reliable distributed systems,
highlighting the difficulty of achieving consensus in a net-
work where some nodes may be compromised or sending
false information. In a recent study by Bagdasaryan et
al. [5], a new class of backdoor attack was proposed in
Horizontal Federated Learning (HFL), where participants
share the same feature space but different sample spaces and

2

collaborate to train a global model. Their findings showed
that the global model could be easily backdoored by a single
party, replacing its local model with a poisoned one.

1.1 Motivation

In VFL, however, there is no complete model shared among
these participants. Furthermore, each participant holds only
a portion of the user’s features. These distinctions render the
straightforward application of existing attacks unsuitable.
Nevertheless, concerns about the resilience of VFL to BGP
persist, particularly regarding whether a single malicious
participant might ‘hijack’ the VFL model as can occur in
HFL [5].

To address this concern, our paper investigates VFLs that
employ Deep Neural Networks (DNNs), which have proven
highly effective in various applications [40], [72], [1], [76].
We uncover that a single malicious participant is capable
of manipulating the model to produce specific predictions
by altering features. In order to identify susceptible features
that can be exploited, we propose two attacks: the replay
attack and the generation attack.

Replay Attack: An effective attack strategy based on
the intuition that robust features can be maliciously used
to manipulate the model’s output. Here, robust features
refer to those strongly correlated with the labels, such as
the red sports car’s head and ‘Automobile’ in CIFAR10 [39],
a widely used dataset for image classification. To carry out
the replay attack, the adversary first selects samples that
strongly align with the desired class and stores their fea-
tures. Then, when targeting a specific sample, the adversary
replaces its features on his/her end with the stored features
to force the model to produce a misclassification (e.g., from
‘not qualified’ to ‘pass’ in a loan application in Fig. 1).

Generation Attack: The advantage of the replay attack
is that it utilizes existing features, which may make it
difficult to detect in cases where there are checks on data
authenticity. However, it may not always be optimal in
achieving the adversary’s goal. The generation attack is
proposed to generate stronger features than those from the
replay attack, which turns the searching process into an
optimization problem.

VFL has a unique property that distinguishes it from
the BGP: the importance of each participant’s features is
highly correlated with their influence on the final prediction.
For instance, if there are a fixed number of total features,
the participant who has a larger portion of those features
is assumed to have more impact on the prediction. This
presents a challenge for an adversary who only controls a
few features to perform successful attacks. To overcome this
limitation, we propose a poisoning phase to be combined
with our attacks.

Poisoning Phase: The poisoning phase serves to increase
the VFL model’s sensitivity to the adversary’s features. As
described in [78], a model is more likely to learn the connec-
tion between the features and the target class if the features
frequently appear in the samples of the class. Therefore,
in the poisoning phase, the adversary can combine the
generated features with a group of samples of the desired
class to increase their frequency. This is supposed to result in
a stronger connection between the implanted features and

the class, allowing the adversary to conduct more powerful
attacks.

In Section 5, we present our evaluation of the proposed
attacks under various scenarios. The experimental results
demonstrate that the attacks, when combined with the
poisoning phase, can achieve impressive performance. For
instance, an adversary controlling only 10% of the features
can achieve an attack success rate of nearly 90% on a binary
classifier.

Furthermore, we also evaluate two possible countermea-
sures against these attacks, namely input transformation
and dropout. However, our results indicate that the effec-
tiveness of these defenses is limited, and they come at the
cost of reduced VFL task performance.

Our contributions can be summarized as follows.
• To the best of our knowledge, our work is the first

to investigate the BGP in VFL with the assumption of
a single malicious participant, which adds to existing
knowledge on this topic.

• We propose two attack methods and their variants,
considering the adversary’s background knowledge,
which are easy to initiate and have a high success rate.

• We evaluate our attacks on real-world datasets of vari-
ous types (tabular, image, text, and multi-modal), show-
ing their effectiveness.

• We analyze existing defense mechanisms and apply
two selected solutions to protect against our attacks.
However, the experimental results indicate that more
advanced defense strategies are needed.

2 PRELIMINARIES

We begin by introducing a set of fundamental concepts and
assumptions. TABLE 1 summarizes the important symbols
and notations.

TABLE 1
Symbols and notations.

Notations Definition

Pi, Di the i-th party in VFL, and Pi’s dataset
Ui, Fi Di’s sample/user space and feature space

fi, ftop, fs Pi’s bottom model, the top model, and the surro-
gate model

θi, θtop fi’s parameters, and ftop’s parameters
x(u)
i , y(u), v(u)

i a sample u’s feature vector of Di, u’s label, x(u)
i ’s

corresponding output from fi
Bϵ(x) a norm ball at x with the radius of ϵ

xδ perturbed adversarial sample of x
θδ perturbed parameter of θ

di, d̃ the size of features in Fi, the output dimension of
each bottom model

P adversary’s knowledge about the samples’ poste-
riors

L, Lt adversary’s knowledge about the samples’ labels,
adversary’s knowledge about a group of samples
who belongs to the target class

K = (·, ·) a tuple denote the adversary’s background
knowledge

2.1 Byzantine Generals Problem
The Byzantine Generals Problem (BGP) is a well-known
challenge in the design of reliable distributed systems. In

3

their seminal work [42], Lamport et al. provided a formal
description of the problem:
Definition 1 (Byzantine Generals Problem). A commanding

general must send an order to their n − 1 lieutenant
generals such that:

• IC1. All loyal lieutenants obey the same order.
• IC2. If the commanding general is loyal, then every

loyal lieutenant obeys the order they send.

Conditions IC1 and IC2 are called the interactive consistency
conditions.

A fundamental conclusion of the BGP, established in
[42], is that to achieve a consensus (attack or retreat) on
the order in the presence of m traitorous generals, the
number of generals n must be greater than 3m. However,
this conclusion does not guarantee the correctness of the
consensus.

The Two Generals Paradox is a special case of BGP that has
been proven to be unsolvable [41]. Specifically, it presents a
thought experiment in which two generals can only com-
municate by sending a messenger through enemy territory
to agree on the time to launch an attack, but can never reach
a consensus.

Our work reveals that the BGP also exists in the con-
text of VFL. In addition to achieving consensus among all
participants, our findings indicate that the VFL model’s
predictions can be easily manipulated by a single malicious
party. Furthermore, in a two-party VFL setting, the Two
Generals Paradox dilemma arises because it is impossible
to determine which party’s features provide the correct
category information if one of them is malicious.

2.2 Deep Neural Networks
Deep neural network (DNN) is one of the most popular
machine learning methods in recent decades, exhibiting
powerful feature extraction ability. Specifically, a DNN f
with parameters θ represents a function f : X → Y , where
X denotes the input space and Y denotes the label.

Take a classification task for example. Given a training
set D, of which each instance (x, y) ∈ D ⊂ X × Y consists
of an input x and its class y, a DNN f is trained to find the
best parameters θ by minimizing the loss function ℓ (usually
a cross entropy loss for classification tasks). Formally, the
search for the best θ can be formulated as:

min
θ

E(x,y)∈D[ℓ(x, y; θ)], (1)

where E[ℓ(·)] denotes the expected loss of f(x; θ) and y.

2.3 Vertical Federated Learning
Consider a classification task and a set of N distributed
parties {P1, P2, · · · , PN} with datasets {D1, D2, · · · , DN}.
For each dataset, Di = (Ui,Fi), where Ui denotes the sam-
ple space and Fi denotes the feature space. Before training,
VFL needs to first determine the sample space U , which is
U =

⋂N
i=1 Ui. Then for features from different Fi, VFL aligns

them for each sample.
After the preparation of data, Pi trains its bottom model,

denoted by fi, to extract the high-level abstractions of each
sample. Let x(u)i denote the feature vector of sample u

with di features from Fi. Then the function of fi is to
map the feature vector to a d̃-dimensional latent space, i.e.,
fi(x

(u)
i ; θi) : Rdi → Rd̃. θi denotes the parameters of fi and

is optimized by a specific objective function. We use v(u)
i to

represent the output of fi. For simplicity, unless otherwise
defined, we use vi instead of v(u)

i in the following.
After each participant uploads vi to a neutral third party

server (NTS), they are concatenated for further calculations.
Specifically, let vcat = [v1, v2, · · · , vN] and ftop denote the
top model located at NTS. ftop learns a mapping from vcat

to vtop, i.e., ftop(vcat; θtop) : RN×d̃ → Rc, where c denotes
the number of classes, and vtop is the output of ftop, which
is also the posterior of a sample. Finally, vtop is sent to the
party who owns the labels to calculate the loss, e.g., cross-
entropy loss. The loss is then used to optimize each model’s
parameters, including ftop and fi. Formally, the training of
VFL is formulated as follows:

min
{θi}N

i=1,θtop

Eu∈U [ℓ(x1, x2, · · · , xN , y; {θi}Ni=1 , θtop)], (2)

where ℓ refers to the loss function.

2.4 Threat Model
Assuming the adversary is a VFL participant who provides
only features and aims to manipulate the VFL model into
predicting a specific set of samples as the adversary’s chosen
class. The adversary may be motivated to profit by provid-
ing a service that alters the results of a user’s bank loan
application. This assumption forms the basis of the threat
model.

The following are additional background knowledge of
the adversary for conducting corresponding attacks.

• Access to the posteriors, denoted by P . P is essential
for the replay attack and generation attack. For the
former, P helps identify robust features, while for the
latter, it guides the optimization direction.
The assumption of this knowledge is reasonable. In
some consulting-like scenarios mentioned in [55], [86],
the adversary needs to know the detail of prediction,
thus he/she can make further decisions depending
on the probability distribution. Moreover, according to
[81], P is essential to data valuation in VFL, which
determines the profit of each participant. Hence, there
is sufficient reason for one party in VFL to access P .

• Auxiliary label information, denoted by L. This
knowledge assumes that the adversary has access to a
small portion, e.g., 1%, of samples’ ground truth labels.
It refers to the case where P is unavailable, indicating
the most confidential situation.
Meeting the assumption of L requires additional ef-
fort. As a participant, the adversary has knowledge of
the samples used in training and can collect a small
subset of candidate samples with unknown labels. The
ground truth labels can then be determined through
investigation or indirect inference methods [18], [52].
For instance, if the adversary is a financial institution
that desires knowledge of a user’s credit rating, it may
infer the rating by posing as a financial management
inquiry and asking the user about their loan amount or
total assets at the target bank.

4

 ! + " !#$%&'"$(!)*&&*,-*.$/!

#$%&'"$())*&&*,-*.$/)

#$%&'"$(0)*&&*,-*.$/1

VFL Model Training

Feature "

Poisoning if 2& is available

 0

)

Poisoning Phase

3*4 -*.$/

Preparing Phase

Train a surrogate model

use 2%

Add " if available

Is posterior available?
No

Yes

Replay Attack

Generation Attack

56

Adversarial embedding

 %.

A not qualified loan applicant

#$%&'"$(! #$%&'"$() #$%&'"$(0

-*.$/! -*.$/) -*.$/0

) 0 %.

3*4 -*.$/

Replacing Phase

Pass

VFL Model Inference

Fig. 2. The overview of the attack pipeline. 1) refers to the poisoning
phase if K contains Lt. 2) refers to the preparing phase, where the
adversary use K to conduct the replay attack and the generation at-
tack. This part also includes the case when P is unavailable and the
adversary uses La to train a surrogate model instead. 3) refers to the
replacing phase, which is after preparing the embedding vadv , and the
adversary replaces his/her embedding with vadv for the target sample.

Please note that in the poisoning phase, the adversary
needs to add generated features to a group of samples from
the target class. This refers to a subset of L. Therefore, we
further divide L into two cases: La, where the adversary
has knowledge of a small portion of the ground truth labels
from all classes, and Lt, where the adversary only knows a
small portion of samples from the target class.

Since P and L are orthogonal, the adversary’s back-
ground knowledge can be formally presented by a tuple
K = (·, ·). If one knowledge is unavailable, it is denoted
by ×. Then, there are six different combinations of K (two
choices for P and three for L).

When K = (×,×), the adversary is unable to conduct
any attacks, and we exclude it from our consideration. When
K = (×,Lt), the adversary cannot perform the replay attack
or generation attack. However, it is also an interesting ques-
tion to see whether the added features alone can achieve
the goal. We leave it as a baseline in experiment, comparing
to our attacks. Then, for K = (P,La) and K = (P,Lt),
K = (P,La) is excluded as Lt is sufficient for the poisoning
phase.

Finally, three kinds of K, i.e., K = (P,×), K = (P,Lt),
and K = (×,L), remain. Section 3 presents the detailed
designs and implementations of these attacks under each of
the conditions.

3 METHODOLOGY

3.1 Overview of Attack Pipeline

The pipeline of our attacks is illustrated in Fig. 2 and can
be divided into three phases: poisoning, preparing, and
replacing. Since the adversary has control over his/her
bottom model’s output, we do not distinguish between the
adversary’s prepared features and the corresponding adver-
sarial embedding in the following. This can also benefit
our attacks because optimization in continuous space is
typically easier than in discrete space.

First, the poisoning phase depends on whether K con-
tains Lt. If K contains Lt, the adversary generates random

Gaussian noise r and adds it on the embedding of each
sample in Lt. This phase aims to make the top model
memorize the connection between r and the target class, as
discussed in Section 1.

Second, after training a VFL model, the adversary should
check whether the knowledge P is accessible. If P is not
accessible, the adversary should train a surrogate model
using La. The output of the surrogate model, denoted by P ′,
is then used to approximate P . The training of the surrogate
model only uses the adversary’s features, providing a view
of the clustering trends of samples from the adversary’s
perspective.

The preparation of adversarial embeddings, vadvs, uses
P (or P ′). Specifically, the replay attack uses P to identify
a set of samples with high confidence in the target class.
Additionally, if r is available, it will be added to a candi-
date sample’s embedding during the selection process. The
embeddings of these selected samples are recorded as vadvs.

In the generation attack, P is used to guide the gen-
eration of vadv that can change a set of samples from a
certain class to the target class. If r is available, it will
be used as the initialization for vadv . Otherwise, vadv is
initialized as 0 to avoid potential interference from existing
noise that may already belong to a class, which could affect
the optimization process.

Finally, in the replacing phase, the adversary replaces
the embedding of a target sample with vadv to achieve the
desired prediction.

The details of implementations with different K are pre-
sented in the following sections. However, since the replay
attack is easy to implement, we do not further introduce it.

3.2 Adversary’s Knowledge: K = (P,×)

This knowledge refers to the scenario where the adversary
acts honestly during the training phase but attempts to
manipulate the model’s predictions during the inference
phase. Formally, the generation attack with this knowledge
can be formulated as follows:

min
vadv∈Rd̃

ℓ([v1, · · · , vadv, · · · , vN], t; {θi}Ni=1 , θtop), (3)

where ℓ measures the entropy loss of the perturbed predic-
tion results and the target class t, and {θi}Ni=1 and θtop are
the models’ parameters.

Solving the objective function is challenging as {vi}i ̸=adv

and {θi}i ̸=adv are confidential, making it infeasible to calcu-
late gradients for optimization. Zeroth Order Optimization
(ZOO) provides an approximation way for the gradients
that only relies on the input and the output.

Given an input x and function f , ZOO set up a constant
h and a perturbation δ to approximate the gradients. It can
be formally described as follows:

g :=
∂f(x)
∂x

≃ f(x + hδ)− f(x − hδ)

2hδ
. (4)

The core idea of ZOO is to use an average slope to
approximate the instantaneous slope at x.

In our case, since {vi}i ̸=adv and {θi}i ̸=adv are fixed after
training, they can be regarded as a part of the unknown
function. Then, denote by F the function that calculates the

5

posteriors based on vadv , i.e., F (vadv; {vi}i ̸=adv , {θi}i̸=adv),
Eq .(3) can be reformulated as:

min
vadv∈Rd̃

{ℓ(vadv)} , (5)

where ℓ(vadv) = maxi ̸=t(F (vadv)i) − F (vadv)t. The new
loss function measures the gap between class t’s probability
and the maximum probability except t.

To reduce the complexity of the optimization, the sym-
metric difference quotient [43] is introduced to estimate the
gradient at coordinate level. Specifically, it can be formu-
lated as follows:

gi :=
∂ℓ(vadv)

∂vadv[i]
≃ ℓ(vadv + hei)− ℓ(vadv − hei)

2hei
, (6)

where gi denote the i-th coordinate’s gradient, vadv[i] de-
note the i-th coordinate of vadv , h is a constant, and ei is a
standard base vector with only the i-th component as 1.

However, a small perturbation in a single dimension
may cause no significant change in the final output, result-
ing in a very small estimated gradient. To solve the problem,
we further scale up the gradient to 10−1 level if it is too
small. With the coordinate-related gradient, the following
optimization process is completed by the coordinate descent
method [8], which subtracts the gradient at the correspond-
ing coordinate.

Given that real-world applications, such as loan appli-
cations, often restrict users to a single application within
a specified period, it is crucial to prepare the adversarial
embedding vector vadv beforehand. However, generating a
universal adversarial embedding vector that can work for
all samples without the true gradients and control of all
features is challenging [59]. One feasible approach is to limit
vadv’s ability to modify the model’s predictions for samples
belonging to a specific source class s, rather than all classes.
By creating vadvs for all source-target pairs, the adversary
can achieve the goal of altering any sample’s prediction.
Furthermore, to generate the optimal vadv , the small set of
samples from class s should have high confidence.

Algorithm 1 outlines the attack process. Firstly, the
adversary prepares a set of samples of the source class,
denoted by S . Then, vadv is initialized to 0. This is because
random initialization may result in vadv belonging to a spe-
cific class, whereas 0 has no impact on the final calculation.
Then, the algorithm will randomly select a sample s in S
and the coordinate i. By querying the top model for the
outputs of vadv+hei and vadv−hei, the adversary obtains an
approximated gradient gi. The adversary subtracts gi from
the i-th coordinate of vadv . The above procedure is repeated
for the total query budget Q. Finally, after optimization, the
optimized vadv is stored for the replacing phase.

3.3 Adversary’s Knowledge: K = (P,Lt)

When the adversary has a few features, his/her contribution
to the final prediction is limited [81], as θtop may give a
small weight on vadv . This limits the adversary’s capability
and may cause that no matter how well vadv is optimized,
it is hard to flip the prediction. Therefore, with the help of
Lt, an active way to adjust the weight is perturbing θtop at
the training phase, i.e., the poisoning phase.

Algorithm 1 Class-specific Adversarial Embedding Genera-
tion
Input: Samples who have high confidence of the source class,
S; query budget Q.

Output: Adversarial embedding vadv .
1: vadv ← 0, q ← 0
2: while q < Q do
3: randomly select s ∈ S
4: randomly choose coordinate i

5: gi ← ZOO(ℓ([v(s)
1 , · · · , vadv, · · · , v(s)

N], t))
6: vadv[i]← vadv[i]− gi
7: q ← q + 2
8: end while

The purpose of the poisoning phase is to implant a
frequently appeared feature r in the samples with the target
class t, hoping that the top model can ‘learn’ the connection
between r and t. The feature r could be randomly initialized
Gaussian noise. Then, for each sample from Lt, r will be
added on its output from the bottom model.

Given the poisoned VFL model, the remaining procedure
is similar to the previous case. The only difference is that
vadv is initialized as r instead of 0. The reason is that search-
ing in the neighborhood of r can improve the generation
efficiency, as the top model is supposed to be sensitive to r.
The objective function is updated to:

min
vadv∈Rd̃

ℓ([v1, · · · , vadv, · · · , vN], t; {θδi}
N
i=1 , θδtop), (7)

where {θδi}
N
i=1 and θδtop denote the perturbed parameters.

Algorithm 2 summarizes the process of the attack.

Algorithm 2 Adversarial Embedding Generation with Poi-
soning Attack
Input: Auxiliary set of samples with target label Lt; samples

who have high confidence of the source class S; query
budget Q.

Output: Adversarial embedding vadv .
1: Poisoning Phase:
2: Generate Gaussian noise r.
3: Add r on the samples’ embeddings from Lt, and upload

them in training.
4: Preparing Phase:
5: vadv ← r, q ← 0
6: The following procedure is the same as Algorithm 1.

3.4 Adversary’s Knowledge: K = (×,La)

In this scenario, the adversary’s knowledge is limited to the
auxiliary label information La and does not have access to
feedback from the VFL model. His/her role is a participant
who is paid to provide features.

Although the adversary lacks access to P , he/she can
still perturb the top model during training by following the
poisoning method outlined in the previous section. Then, to
overcome the challenge of lacking P , La is used to train a
surrogate model fs.

Specifically, fs takes the output of the adversary’s bot-
tom model as input (with r added if the sample belongs to
the target class) and aims to approximate the classification
boundary of ftop using only the adversary’s features.

6

To train a high-quality surrogate model with a small
number of samples, mix-up is employed in fs’s training.
Mix-up, proposed by Zhang et al. in [90], implements data
augmentation through combinations of samples from dif-
ferent classes. For example, given two samples u and v,
mix-up creates a new sample xnew = λx(u) + (1 − λ)x(v),
with a new label ynew = λy(u) + (1 − λ)y(v). Compared
to conventional techniques such as rotation, clipping, and
scaling, mix-up has demonstrated significant improvements
on original tasks [90].

However, fs still faces the challenge of transferability
of the generated vadv between fs and ftop. This is be-
cause much information is not accessible, i.e., {vi}i ̸=adv

and {θi}i̸=adv , making it difficult to evaluate whether the
generated vadv can overcome the influence of other par-
ticipants’ features. To address this challenge, we focus on
strengthen vadv’s signal on the target class. The attack can
be formulated as follows:

min
vadv∈Rd̃

ℓ(fs(vadv), t). (8)

Algorithm 3 outlines the attack process. First, the ad-
versary conducts the poisoning phase using the subset Lt of
La. Next, the adversary trains a surrogate model fs using La

and their features, with mix-up used for data augmentation.
After fs’s training, vadv is initialized with a sample u that
has high confidence with the target class. The optimization
process then strengthens the signal of vadv on the target
class until the loss is within the given bound.

Algorithm 3 Adversarial Embedding Generation with Aux-
iliary Label Information
Input: Auxiliary label information with all classes La, error

bound ϵ.
Output: Adversarial embedding vadv .

1: Poisoning Phase:
2: Generate Gaussian noise r.
3: Add r on embeddings of samples with target class from La,

and upload them at training time.
4: Preparing Phase:
5: Train a surrogate model fs.
6: Collecting a sample u with high confidence of target class

through fs.
7: vadv ← v(u)

adv + r.
8: while ℓ(fs(vadv), t) > ϵ do
9: vadv ← vadv − ∂ℓ(fs(vadv),t)

∂vadv

10: end while

4 EXPERIMENTAL SETUP

Based on [55], [18], we focus on evaluating two-party VFL as
the primary case, while analyzing the impact of the number
of parties in Section 6. Real-world cases demonstrated by
FedAI [84], [85] and previous works of VFL [89], [55], [91]
suggest that two-party VFL is more commonly used than
multi-party VFL. We speculate that this is due to a decrease
in overlapped users among participating companies and an
increase in communication costs as the number of parties
increases.

4.1 Datasets

We evaluate the attack performance on 8 public datasets,
including tabular, image, text, and multi-modal data types:
1) Company Bankruptcy Prediction Dataset (denoted by
BANK) [47], which was collected from the Taiwan Economic
Journal for the years 1999 to 2009, consisting of 6,819 in-
stances with 95 attributes and two classes; 2) CRITEO [28],
which is used for Click-Through-Rate (CTR) prediction, con-
sisting of 100,000 instances; 3) MNIST [44], which is widely
used as the benchmark in machine learning, consisting of
60,000 images with 10 classes; 4) CIFAR10 [39], which is also
a well-known image dataset, consisting of 60,000 images
with 10 classes; 5) CIFAR100 [39], which shares the same
images as CIFAR10 but has 100 classes; 6) Facial Expression
Recognition (FER) [6], which consists of a training set of
28,709 examples and a test set of 7178 examples; 7) IMDB
[56], which contains 50,000 movie reviews with two classes;
and 8) Android Permission Dataset (denoted by AP) [58],
which contains 20,000 android APPs’ permission statistics
and descriptions with two classes.

For BANK, CRITEO, and AP, we further use the over-
sampling method to balance the number of samples in each
category. Then the train and test data is split with a ratio of
7:3. As for MNIST, CIFAR10, FER, and IMDB, they are split
by default. Specifically, CIFAR10 uses 50,000 images in the
training and 10,000 images for testing. IMDB, however, uses
25,000 reviews in training and 25,000 reviews for testing.

Dataset Configuration: To simulate a two-party VFL
scenario, we adopt the approach described in [55], [18] and
divide the features into two parts. For tabular data, splitting
it into two parts is straightforward. When dealing with
images, we split them vertically along the center, meaning
that if the feature ratio is 50%, we divide the image into two
halves. As for text data, we split it based on the proportion
of words.

In our experiments, we also vary the feature ratio of
the adversary from 10% to 90% to approximate his/her
feature importance to the VFL model. Here, the feature ratio
refers to the proportion of features owned by the adversary.
According to [81], the contribution of each party to the
prediction results in VFL is proportional to the number
of features they own. Therefore, using the feature ratio to
represent the importance of the adversary is reasonable.

4.2 Models and Default Parameters

In our experiments, we train the VFL model in a local envi-
ronment and designate one bottom model as the adversary’s
model. TABLE 2 provides an overview of the models and
other default parameters.

Models: The top model comprises dense layers, includ-
ing an input layer, an output layer, and one hidden layer.
The bottom model is chosen based on the type of data. For
tabular data, we use MLP [73] with three dense layers to
compute embeddings. For image data, we use ResNet [29],
while for text data, we use BERT [14] as the bottom model.
The surrogate model is also made up of dense layers.

Default Parameters: We train the VFL model for 10
epochs, as pre-trained models from PyTorch 1 and Hugging

1. https://pytorch.org

7

TABLE 2
Models and default parameter settings.

Term Parameter Setting

MLP (Bottom) size of hidden layer width=64
size of output dimension d̃ = 16

MLP (Top) size of hidden layer width=64
size of input layer in features=16N

MLP (Surrogate) size of hidden layer width=64
size of input layer in features=16

ResNet number of block layers depth=18
size of output dimension d̃ = 16

BERT type bert-base-uncased

Training epochs 10
batch size 256 (images and tab-

ular data) or 8 (texts)

Adam learning rate lr = 1e− 3
weight decay wd = 5e− 4

Poisoning Phase time to poison samples after epoch=5
poison ratio 1%, e.g., 50 for CI-

FAR10

ZOO height h=0.01
step step=0.01

Mix-up training epoch epoch=300
random seed α = 1

Face 2 are employed as bottom models. Each batch for
tabular and image data consists of 256 samples, while for
text data, it is limited to 8 due to memory constraints.

During the poisoning phase, only 1% of samples from
the target class are used, which is comparable to the number
used in conventional poisoning attacks [66]. Moreover, we
limit the query budget of the generation attack to 300
iterations. These stringent settings take into account the
limitations of the practical implementation in the real world,
such as the cost of selecting users’ information, and help to
expose the serious security issues in VFL.

4.3 Metrics
The metrics used for evaluating our attacks includes the At-
tack Success Rate (ASR), Running Time (RT), and Memory
Usage (MU).

ASR: The main metric used to evaluate the attack per-
formance, which is defined as follows:∑

u∈Dtest

I(argmax(f(v(u)
1 , · · · , v(u)

N ; θtop)) = t)

∥Dtest∥
, (9)

where I(·) is an indicator function and Dtest denotes the
testing dataset. For both the replay attack and the generation
attack, ASR is tested with 10 vadvs and the averaged results
is reported.

RT: The evaluation of RT is straight forward. It records
the timestamps from the start of the program to the end,
and then records the time cost by the attack.

MU: The MU is recorded during the process and is im-
plemented by memory profile and psutil, which are prevalent
packages used to record process and system utilities.

4.4 Baselines
We introduce two baseline methods for comparison. The
first is the poison attack, which corresponds to the scenario

2. https://huggingface.co

where K = (×,Lt). This baseline evaluates whether the
frequently implanted feature r can serve as a ‘trigger’ sim-
ilar to that in backdoor attacks [66]. The poison attack is
easy to implement, with the adversary adding r to their
embeddings.

The second baseline is a modification of the backdoor
attack in HFL [5], called the scale attack. In [5], a poisoned
model is trained, and its perturbed parameters are scaled
before the aggregation process. Following their approach,
the scale attack selects a sample from the target class ran-
domly and scales its embedding, such as by a factor of 10,
before uploading it to the top model.

4.5 Environment
We implement the attacks in Python and conduct all experi-
ments on a workstation equipped with AMD Ryzen 9 3950X
and an NVIDIA GTX 3090 GPU card. We use PyTorch to
implement the models used in the experiments, and pandas
and sklearn for data preprocess.

5 EVALUATION

In this section, we present three different scenarios based on
K. The purposes of each scenario are organized as follows:

• In Section 5.1, we evaluate our attacks in the basic
setting when K = (P,×).

• In Section 5.2, we conduct experiments to evaluate
the effect of combining the poisoning phase when
K = (P,Lt).

• In Section 5.3, we evaluate whether the adversary alone
can conduct the attacks when K = (×,La).

Given that we limit the scope of vadv to modifying a
set of samples from a specific class, our evaluations and
comparisons focus on a single fixed source class. Specif-
ically, we use ‘0’ as the source class, which corresponds
to ‘bankrupt’ in BANK, ‘airplane’ in CIFAR10, ‘negative’
in IMDB, and so on. For binary classification tasks such
as BANK, CRITEO, and IMDB, we set the target class to
1’. Likewise, for image datasets like CIFAR10, we also set
the target class as 1’, which corresponds to the ‘automobile’
class, to ensure consistency across experiments. We analyze
the impact of different combinations of source and target
classes in Section 6.3.

5.1 Evaluation with K = (P,×)

In this section, we evaluate the effectiveness of our attacks
using K = (P,×), and address the following questions:

• How effective are our attacks against a normal VFL
model?

• Can the adversarial embedding successfully change the
prediction of a sample to the target class?

• Do our attacks work well across all types of datasets?
Attack Performance: Fig. 3 illustrates the results of

our attacks with K = (P,×). For BANK, CRITEO, and
IMDB, we observe that the generation attack can achieve
remarkable performance with an ASR of nearly 99%, given
a feature ratio higher than 30%. For MNIST and CIFAR10,
the ASR becomes considerable when the adversary has over
50% features. However, for FER, the ASR only reaches 99%
when the feature ratio is set to 90%.

8

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
AS

R
BANK

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
CRITEO

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
IMDB

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0

AS
R

MNIST

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0
CIFAR10

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0
FER

Scale Replay Generation

Fig. 3. Attack performance with K = (P,×). The x-axis represents the
feature ratio of the adversary. The y-axis represents the ASR.

We speculate that the difference in the success rate
between the tabular/text dataset and image datasets is due
to the completeness of features. For example, in BANK, the
feature split distributes different attributes to each party, but
it does not split the attribute values themselves. On the other
hand, in MNIST, the feature split means that the image of
a number will be cut into two parts, which can make our
attacks more challenging to succeed as the adversary does
not have valid and complete features to work with.

Regarding the difference between FER and
MNIST/CIFAR10, we speculate that the performance of the
main task may contribute to the observed phenomenon. In
particular, the classification accuracy of FER on the test set
is only around 60%, whereas MNIST and CIFAR10 achieve
over 90% accuracy. This means that even true data may be
misclassified by the model in the case of FER, which could
reduce the success rate of our attacks.

The baseline, scale attack, and replay attack are effective
when the feature ratio exceeds 50%. In binary tasks, the
replay attack demonstrates greater stability compared to the
scale attack, particularly on the CRITEO dataset. However,
for multi-label tasks, the scale attack outperforms the replay
attack.

We hypothesize that the classification boundary for
multi-label tasks is more complex than that of binary tasks.
As a result, in binary tasks, merely scaling the values will
not immediately achieve the desired outcome; it is necessary
to identify features that cross the boundary. In contrast, for
tasks with complex boundaries, features significant for one
class might also be important for another class. This implies
that replacing features could lead to incorrect predictions
instead of the targeted class.

In conclusion, the above results demonstrate that the
success of our attacks is independent of the data type, as
expected. Moreover, for tabular and text data, an attribute
or a word may be decisive in determining the class, whereas
for images, a salient complete object, such as cat ears, is
required.

5.2 Evaluation with K = (P,Lt)

In this section, our goal is to verify speculations as follows.

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0

AS
R

BANK

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
CRITEO

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
IMDB

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0

AS
R

MNIST

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0
CIFAR10

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0
FER

Scale Replay Generation Poison

Fig. 4. Attack performance with K = (P,Lt). The x-axis represents the
feature ratio of the adversary. The y-axis represents the ASR. The solid
line refers to the attack performance with K = (P,Lt), while the dashed
line represents the corresponding attack performance with K = (P,×).

• The poison attack alone cannot work with a limited
number of poisoning samples;

• The perturbed model leads to a better performance of
two attacks.

Configuration of Lt: We randomly sample auxiliary
label information from the training dataset, with a sampling
rate of 1%. For example, in CIFAR10, only 50 images of
the target class are poisoned. Our setting is more strict for
the adversary compared to conventional poisoning attack
settings [66].

Attack Performance: The results of our attacks are pre-
sented in Fig. 4. Our evaluation reveals that the poison at-
tack alone is not effective, as its purpose is to attract the top
model’s attention rather than inducing a wrong prediction.
However, for CRITEO and IMDB, even the poison attack
can achieve a high ASR when the feature ratio is over 50%,
indicating that the top models trained on these datasets may
be more sensitive to the feature values.

Overall, our attacks benefit from the poisoning phase.
For example, for CIFAR10, when the feature ratio is 50%, the
generation attack’s performance improves from nearly 60%
to over 90% with the help of the poison attack. Similarly,
the replay attack’s performance improves from 30% to 47%
when the ratio is 50%. The improvements are also observed
on other datasets.

These results demonstrate the effectiveness of our pro-
posed attacks when the adversary provides valid features.
In such cases, the attacks can achieve remarkable perfor-
mance, highlighting the severe threat posed by a malicious
party in VFL.

5.3 Evaluation with K = (×,La)

In this section, we assess the performance of our attack
when K is limited to La. Our objective is to discover or
generate embeddings that exhibit strong signals related to
the target class under this stringent condition.

Configuration of La: We also sample La from the train-
ing dataset, with a sampling ratio of 1%. For CIFAR10, this
results in a total of only 500 images, with 50 images per
class. This setup poses a significant challenge to train our
mix-up based surrogate model.

9

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
AS

R
BANK

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
CRITEO

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
IMDB

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0

AS
R

MNIST

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0
CIFAR10

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0
FER

Scale Replay Generation Poison

Fig. 5. Attack performance with K = (×,La). The x-axis represents the
feature ratio of the adversary. The y-axis represents the ASR.

Attack Performance: The results of our attacks are pre-
sented in Fig. 5. In comparison to the previous scenarios,
the performance of our generation attacks decreases. This
outcome is expected, as we lack global information to
optimize the adversarial embedding and instead focus on
maximizing the confidence given by the surrogate model.
Therefore, the loss of information introduced by the surro-
gate model and the potential overfitting of the embedding
on the surrogate model contribute to the performance drop.

Nevertheless, our attacks remain potent when the fea-
ture ratio is over 50%, and even 30% for binary tasks.
We speculate that this is because the adversary places
significant importance on the final prediction with high
feature ratios, and the clustering tendency of the adversary’s
embedding is captured by the surrogate model [18], [65].

In conclusion, when K is limited to La, our attacks are
affected, but they can still perform well when the adversary
has enough features that contribute to the final prediction.

6 SENSITIVITY ANALYSIS

In this section, we further evaluate the impact of the default
settings used in the previous experiments. We aim to answer
the following research questions:

• How does the number of parties affect our attacks?
• Will more classes invalidate our attacks?
• Does the choice of source and target classes affect our

attacks?
• What is the impact of poisoning phase on our attacks?
• How does query budget affect the generation attack?
• What is the impact of multi-modal data on our attacks?
• What is the complexity and running time of our at-

tacks?
• How much memory does our attacks take?

6.1 Number of Parties
In this section, we assess the impact of the number of parties
on our attacks, with a fixed adversary feature ratio of 10%.
Each newly added participant is assigned 10% of the total
features. For instance, when there are three participants,
both the adversary and the newly joined participants have
a feature ratio of 10%, and the participant with labels owns

2 4 6 8 10
Num of Party

0.0

0.5

1.0

AS
R

BANK

2 4 6 8 10
Num of Party

0.0

0.5

1.0
CIFAR10

Scale
Replay
Generation
Poison

Fig. 6. Attack performance with different number of parties. The x-axis
represents the number of parties. The y-axis represents the ASR.

the remaining 80%. When there are ten participants, each
one has 10% of the features. The typical datasets BANK and
CIFAR10 are evaluated in the following.

The results are summarized in Fig. 6. We observe that
increasing the number of parties does not decrease the
performance of our attacks. On the contrary, the attacks’
performance even increases when there are more parties.
We speculate that this is because when the features are
distributed among more participants, the adversary gains
more influence over the final predictions. For example,
when there are only two parties, the adversary is the weaker
one with only 10% of the features, and the other party
dominates the predictions. However, when there are ten
parties, each participant holds 10% of the features, giving
the adversary more opportunities to manipulate the model
with their prepared vadvs.

In conclusion, when there are multiple parties, and each
one contributes evenly to the final predictions, the adversary
is more likely to manipulate the final results as a single
party.

6.2 Number of Classes
In this section, we evaluate the performance of our at-
tacks with a larger number of classes. Our objective is to
investigate the impact of the number of classes on our
attacks, as complex classification boundaries may make
generating vadv challenging. We conduct the experiments
using CIFAR10 and CIFAR100 datasets. The attacks are
performed with K = (P,Lt), where the adversary’s ability
is maximum.

The results for both datasets with different feature ratios
are shown in Fig. 7. The performance for CIFAR10 has
been introduced in Section 5.2, here we do not repeat it.
As for CIFAR100, all attacks’ performances are affected
when the feature ratio is less than 70%. This outcome is
reasonable as complex classification requires more diverse
embeddings from both parties, i.e., more clustering cen-
ters. Consequently, with the same feature ratio, it is more
challenging for the adversary to flip the prediction without
sufficient influence.

In conclusion, the experiments indicate that our attacks
may experience a loss of performance as the number of
classes increases. Nonetheless, our attacks still function ef-
fectively when dealing with 100 classes.

6.3 Impact of Different Pairs
Our previous evaluation is conducted with a fixed source-
target pair by default. Therefore, it is important to evalu-
ate our attacks under different source-target pairs. We use

10

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0
AS

R

CIFAR10

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0
CIFAR100

Scale
Replay
Generation
Poison

Fig. 7. Attack performance when the number of classes changes. The
x-axis denotes the feature ratio of the adversary. The y-axis denotes the
ASR.

TABLE 3
Performance of different source and target pairs. The row denotes the

source classes, and the column denotes the target classes.
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Airplane - 56.74% 34.51% 18.18% 7.08% 8.19% 5.38% 1.02% 41.84% 5.61%
Automobile 12.03% - 12.57% 2.24% 0.42% 2.01% 0.38% 8.34% 40.85% 26.73%
Bird 40.23% 10.33% - 19.67% 59.01% 12.24% 13.66% 14.66% 24.73% 0.47%
Cat 1.43% 0.64% 32.79% - 68.86% 49.89% 11.08% 4.11% 21.10% 5.05%
Deer 6.25% 0.10% 56.87% 8.68% - 57.13% 24.91% 50.81% 18.99% 43.35%
Dog 5.69% 0.05% 3.41% 70.51% 56.13% - 3.12% 19.46% 0.86% 1.02%
Frog 7.38% 0.91% 44.74% 60.39% 47.14% 13.03% - 0.08% 22.72% 13.96%
Horse 0.51% 0.01% 5.64% 16.03% 87.23% 20.16% 1.42% - 0.82% 7.80%
Ship 2.49% 79.00% 2.25% 15.22% 24.10% 15.75% 10.17% 0.01% - 24.15%
Truck 55.37% 68.24% 13.43% 35.31% 6.30% 27.60% 31.52% 2.99% 18.57% -

CIFAR10 to perform the following experiments. Since our
attacks do not perform well with a feature ratio of 10%, we
set the feature ratio as 30% for comparison. In this section,
we focus on the generation attack.

Table 3 summarizes the results, which show that the
performance of our attacks varies with different source and
target pairs. In general, our attacks perform better when the
source and target classes are both animals or vehicles. For
example, to change the prediction from ‘Horse’ to ‘Deer’,
our generation attack can achieve an ASR of 87.23%. This
is reasonable since these classes are similar in our human
concept, and the model can capture the relationship between
them as expected.

Moreover, we find that the relationship also exists in a
fixed source and target pair. For example, if we generate a
vadv to change the prediction from ‘Dog’ to ‘Cat’, the model
may predict ‘Deer’ for a set of samples. This indicates that
in VFL, compared to a targeted attack, an untargeted attack
is easier to perform as it does not require any extra design.

To summarize, the difficulty of the attacks varies with
different pairs. If the two concepts are similar and can
be distinguished by the model, then it is easier for the
adversary to launch a successful attack.

6.4 Impact of Poisoning Phase

This section evaluates the impact of the number of poisoned
samples on our attacks using the CIFAR10 dataset, with the
adversary’s feature ratio fixed at 30%. We vary the sampling
ratio of poisoned samples from 1% to 10% of the target
class’s samples for comparison. Fig. 8 plots the results of
the experiments.

As expected, increasing the number of samples added
with r enhances the performance of the poison attack, albeit
with some limitations. For instance, at a poison ratio of 9%,
the poison attack achieves an ASR over 10%, which is much
better than the ASR of nearly 0% at the poison ratio of 1%.

Furthermore, the results show that as the r becomes
stronger, the performance of the generation attack, replay
attack, and scale attack also improves, although with some

0.01 0.03 0.05 0.07 0.09
Poison Ratio

0.0

0.5

1.0

AS
R

CIFAR10
Scale
Replay
Generation
Poison

Fig. 8. Effect of poison ratio. The x-axis denotes the proportion of poi-
soned samples among the target class’s samples. The y-axis represents
the ASR.

100 200 300 400 500 600
Number of Queries

0.00

0.25

0.50

0.75

1.00

AS
R

Generation Attack

BANK
CIFAR10

Fig. 9. Performance with different query budgets. The x-axis represents
the number of iterations. The y-axis represents the ASR.

fluctuations. Notably, the generation attack benefits more
than the replay attack and the scale attack since it is initial-
ized with r.

In conclusion, increasing the number of poisoned sam-
ples can enhance not only the performance of the poison
attack but also the performance of other attacks. These
findings also reveals the threat posed by malicious parties
in the training of VFL models.

6.5 Number of Queries

This section examines the impact of the query budget on
our attacks using the BANK and CIFAR10 datasets, with
the adversary’s feature ratio set at 30%. We vary the number
of iterations from 100 to 600, corresponding to the number
of queries from 200 to 1,200. Fig. 9 plots the results of the
experiments.

The results show that for BANK, the generation attack
achieves an ASR of almost 100% with only 100 iterations,
showing no significant trend with the increase in the num-
ber of queries. However, for CIFAR10, the attack’s perfor-
mance improves with an increasing number of queries until
it converges when the number of iterations reaches 500.
This phenomenon is due to the feature completeness and
the number of classes as we discussed in Section 5.1, which
require more queries to generate a powerful r for CIFAR10.
Nevertheless, the improvement in performance has a limit,
likely because the adversary lacks sufficient features.

Overall, our findings indicate that the generation at-
tack’s performance improves with an increasing number of
queries, but there is a limit to the improvement due to the
adversary’s feature ratio.

6.6 Impact of Modals

The characteristics of VFL make it well-suited for multi-
modal learning. Thus, in this section, we evaluate the attacks
in a multi-modal scenario with K = (P,Lt) using the AP
dataset, which includes both text and tabular data.

11

TABLE 4
Comparison of different data modal. The value in the cell denotes the

ASR of the corresponding attack and the data modal.

Modal Poison Attack Scale Attack Replay Attack Generation Attack

Tabular 0.93% 100% 100% 100%
Text 15.02% 11.23% 22.05% 100%

The text data contains the description of an APP, while
the tabular data records the characteristics of an APP, such
as the number of permissions and the security level of
requested permissions. Intuitively, the tabular data is much
more critical for classification than the text data, implying
that attacks targeting the tabular data should perform better.

The results in TABLE 4 support this intuition. When the
adversary has access to the tabular data, the scale attack,
replay attack, and generation attack achieve an ASR of
100%. However, for the text data, only the generation attacks
can achieve the same performance. For the other three
attacks, the importance of the text data for classification is
limited, resulting in a performance lower than 20%. This
finding reconfirms our speculation that a participant with
more important data for the top model can carry out a more
potent attack.

In conclusion, our attacks are agnostic to the modality
of the data. The attack’s capability is determined by the
importance of the features to the task at hand.

6.7 Running Time
This section assesses the running time of our attacks with
K = (P,×). We fix the feature ratio at 10%, and it does not
affect the attack procedure.

Attack Complexity: The scale attack and replay attack
have a theoretical complexity of O(N), where N is the size
of the training set. The scale attack requires samples from
the target class and randomly selects them, leading to the
need to search the training set for enough samples. Simi-
larly, the replay attack needs samples with high confidence
from the target class, thus given a threshold, e.g., 0.9, the
complexity does not exceed O(N).

For the generation attack, the complexity of the selection
part is also O(N) since it involves finding samples from
the source class. The subsequent procedure is to compute
the differentiation of two queries, which takes O(Q) time,
where Q is the query budget. However, since Q is limited
to a small constant in our cases, we conclude that the
generation attack’s complexity is also O(N).

Experimental Results: TABLE 5 reports the running time
of different attacks on various datasets. Interestingly, the
results show no significant difference in the time spent for
different attacks on the same dataset. This outcome occurs
because the timer records the period, including computing
posteriors and calculating the ASR. Therefore, the model
structure’s complexity dominates the time cost rather than
the attack itself. For example, Bert takes much longer to
compute the activation values than ResNet and MLP.

The difference in running time between the scale attack
and the replay attack is due to the implementation. We use
the ‘random’ package to generate a value and select the
sample if the value is over 0.9 for the scale attack. Therefore,
the scale attack takes slightly more time to select enough

TABLE 5
Running time (s) of different kinds of attacks on each dataset.

Attacks BANK CRITEO IMDB MNIST CIFAR10 FER

Scale Attack 2.10 14.21 1047.19 30.55 40.58 79.45
Replay Attack 1.01 11.96 1385.05 28.40 39.55 67.70
Generation Attack 4.29 16.52 1339.01 31.75 42.31 67.89

TABLE 6
Memory usage (MiB) of different kinds of attacks on each dataset.

Attacks BANK CRITEO IMDB MNIST CIFAR10 FER

Scale Attack 2463.1 2510.1 2478.8 3120.7 3369.9 3041.9
Replay Attack 2463.2 2510.3 2478.9 3120.9 3370.1 3042.1
Generation Attack 2463.4 2510.4 2479.0 3121.8 3370.3 3042.3

samples than the replay attack, especially when finding high
confidence samples is easy.

In summary, our experimental results demonstrate that
the running time of the attacks is not significantly affected
by their theoretical complexity but rather the model struc-
ture’s complexity, which accounts for most of the computa-
tion time.

6.8 Memory Usage

This section evaluates the memory usage of different attacks
with the same experimental setup as Section 6.7. However,
recording the memory usage of a function is challenging
since an object’s size may increase and decrease during the
process. To address this issue, we use the memory profile and
psutil packages to measure the memory usage.

The memory usage results are summarized in TABLE 6,
which includes the training data, i.e., images and texts,
loaded in the attack. Each attack consumes almost the same
memory for each dataset, with slight differences possibly
resulting from intermediate calculation results’ storage.

However, note that different running environments,
such as Windows and Linux, have different scheduling logic
that can affect memory usage. Therefore, our results in this
section should be taken as reference.

7 DEFENSE

In this section, our focus is on exploring potential defense
strategies against the attacks we have identified. Since we
are introducing a new track of attack against VFL, there is
a lack of existing research dedicated to developing defense
mechanisms for this specific context. The core challenges
that arise when designing defense methods for VFL can be
summarized as follows:

• Due to privacy protection measures, at inference time,
the adversary’s embedding in plaintext is not available
for detection, leaving only posterior information.

• The assumption of ‘clean’ datasets is no longer valid
since the adversary’s cooperation is required in prepar-
ing the validation and test datasets, allowing the adver-
sary to poison any ‘clean’ datasets.

In addition, as our attacks rely on exploiting features with
a strong signal, we are seeking defense methods that can
be incorporated into the training process, such as a robust
model design.

12

In the following section, we will begin by analyzing
existing defenses for traditional centralized scenarios from
two streams: adversarial perturbation generation and poi-
soning attacks. We will then provide an explanation for why
we have chosen two specific methods as references for our
defense strategies. Finally, the experimental results will be
presented in Section 7.2 and Section 7.3.

7.1 Analysis of Existing Defenses

Since our attacks involves feature generation and poisoning
phase, we investigate defenses on these two perspectives for
inspiration.

Defenses against Adversarial Attacks: Firstly, defenses
such as [80], [26], [63] that utilize clean datasets to count
statistical properties of benign samples for detection are not
applicable in this scenario.

After excluding the above-mentioned detection meth-
ods, existing defense strategies mainly focus on adversarial
training [67], [20] and input transformation [27], [62] to
obtain a robust model. However, adversarial training still re-
quires all participants to cooperate, making it vulnerable to
attacks by adversaries. Additionally, the computational and
communication resources required for adversarial training
make it impractical for real business scenarios.

Therefore, we have chosen input transformation as one
of our defense methods. According to findings in [48], [5],
limiting the size of activations can be helpful for defending
against numerical attacks. To achieve this goal, we normal-
ize vi from each participant following the method proposed
in [62].

Defenses against Poisoning Attacks: To begin, it should
be noted that our attacks are orthogonal to poisoning at-
tacks. We mainly combine the poisoning phase to perturb
the top model’s weights and strengthen our attacks. Fur-
thermore, based on previous evaluations, we have found
that the implanted feature alone cannot modify the model’s
prediction. Therefore, we speculate that existing defenses
may not be suitable for our attacks.

Specifically, according to [22], existing defenses can be
classified into two categories: offline defense and online
detection. Offline defense requires data and model inspec-
tion. For example, Neural Cleanse [80], a typical method
in this category, attempts to generate the trigger reversely.
However, due to the performance of the r and the incom-
plete access to the model, it is not feasible. On the other
hand, online detection methods such as Artificial Brain
Stimulation (ABS) [53] and STRIP [23] require a set of clean
samples’ normal ‘behavior’ to determine the threshold for
identifying abnormalities, which is impractical due to the
second challenge.

In [33], Ilyas et al. indicated that useful but non-robust
features could cause misclassification. We speculate that our
planted features plays the same role, and the top model may
memorize its connection with the target class. Therefore, we
introduce dropout [69] to reduce the top model’s memory.

In summary, we have adopted two countermeasures,
normalization and dropout, to defend against our attacks.
The following sections will evaluate these methods sepa-
rately.

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0

AS
R

BANK

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
CRITEO

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
IMDB

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0

AS
R

MNIST

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0
CIFAR10

0.1 0.3 0.5 0.7 0.9
Feature Ratio

0.0

0.5

1.0
FER

Scale Replay Generation Poison

Fig. 10. Impact of normalization on attack performance. The x-axis
represents the feature ratio of the adversary. The y-axis denotes the
ASR. The dashed line denotes the performance without defense.

7.2 Normalization
In this section, we will evaluate the impact of normalization
on our attacks. Since we use ZOO to approximate gradients
of a single coordinate, this strategy will significantly weaken
our ability. Additionally, the performance of the scale attack
will also be affected by normalization on each sample’s
embedding.

We conducted experiments using the same settings as
in Section 5.2, where K = (P,L), and varied the feature
ratio of the adversary for comparison. Fig. 10 shows the
results of our attacks’ performance under normalization.
The impact is evident on all datasets. For example, when the
feature ratio is 10%, our generation attack can only achieve
an ASR of 30% on BANK, which is over 99% in Section 5.2.
Furthermore, our attacks fail on MNIST when the feature
ratio is 30%, and the generation attack drops from 85% to
0%. A similar drop occurs in the scale attack and the replay
attack.

Despite the drop in performance at small feature ratios,
our attacks’ performance remains when the feature ratio is
over 50%, indicating that the threat still exists.

In conclusion, normalization does affect the efficiency
of our attacks when the adversary’s feature ratio is small.
However, its impact is limited when the adversary has
sufficient features, making him/her important to the final
predictions. The vulnerability still lies in the fact that the
current VFL lacks design for fault tolerance.

7.3 Dropout
This section evaluates the impact of dropout as a defense
mechanism. We added one dropout layer to the top model
after the activation layer (e.g., ReLU) and varied the prob-
ability of dropout from 0.1 to 0.9 for comparison. The
probability denotes how likely a neuron’s value will be set
to zero. Other settings were the same as those in Section 5.2,
and we set the feature ratio to 30%.

Fig. 11 shows the results. For BANK and CRITEO, the
impact of dropout is minimal. Furthermore, the scale attack
and the replay attack even perform better when the prob-
ability is set to 0.9. We speculate that this may be because
dropout also severely weakens the availability of features

13

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
AS

R
BANK

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
CRITEO

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0
IMDB

0.1 0.3 0.5 0.7 0.9
Dropout Probability

0.0

0.5

1.0

AS
R

MNIST

0.1 0.3 0.5 0.7 0.9
Dropout Probability

0.0

0.5

1.0
CIFAR10

0.1 0.3 0.5 0.7 0.9
Dropout Probability

0.0

0.5

1.0
FER

Scale Replay Generation Poison

Fig. 11. Impact of dropout on attack performance. The x-axis represents
the feature ratio of the adversary. The y-axis denotes the ASR. The
dashed line denotes the performance without defense.

of the other party, making the importance of the adversary
relatively increase. A similar phenomenon occurs on IMDB,
although there is more fluctuation.

For MNIST, CIFAR10, and FER, there is no change in the
scale attack and the replay attack. However, the generation
attack almost fails on these datasets. To understand the
reason for this failure, we further examin the experiments’
details. We find that the accuracy of the main task rapidly
decreases as the probability of dropout increases. Thus, we
speculate that the low accuracy implies that the top model
loses its ability to predict precisely. As a result, our vadv

also loses its effectiveness since the top model behaves like
a random guess.

In conclusion, dropout can reduce the model’s memo-
rization of specific patterns, which is helpful. However, with
a high probability of dropout, not only does the attack’s
efficiency decrease, but the main task’s performance drops
rapidly. In VFL, this performance loss is unacceptable, as it
violates the motivation of collaborative learning.

8 RELATED WORK

8.1 Attacks and Defenses in FL
Federated Learning (FL) is rapidly gaining popularity in
the industry, leading to an increase in the development of
attacks and defenses aimed at ensuring its secure applica-
tion. Currently, much of the research in FL is focused on
the scenario of Horizontal Federated Learning (HFL), where
multiple clients share the same feature space but have dif-
ferent sample spaces. The security and privacy implications
of VFL have yet to be widely studied. In the following, we
primarily provide an overview of the attacks and defenses
of HFL, while also presenting the limited available research
on VFL to our best.

Attack Vectors: In HFL, participants have the same
feature space F but different sample spaces U . The aim of
HFL is to get a global model by aggregating the parameters
of bottom models, which are trained from each participant’s
data. Therefore, in this scenario, studying adversarial at-
tacks is almost the same as centralized learning. As a result,
much of the research in this area has focused on backdoor
attacks against HFL.

The goal of the backdoor attack in HFL is to implant
a trigger in the global model, allowing an adversary to
manipulate the results of the model users. Bagdasaryan et
al. were the first to propose such an attack in [5]. They
implemented a simple but effective method for injecting a
backdoor by scaling up the gradients. Subsequent research
by Sun et al. [71] and Wang et al. [82] explored the efficacy
of backdoor attacks in more complex scenarios, such as
the EMNIST dataset. Xie et al. [88] proposed a distributed
implementation of the attack by splitting the triggers into
multiple parts.

Liu et al. [51] were the first to study the backdoor
attack against VFL. They used the gradients of one sample
belonging to the target class to replace the target samples,
allowing them to bypass the limitation of not being able to
change labels during training. However, their experimental
results showed that their method had a negative impact on
the performance of the original task and was not effective
on the selected datasets.

Indeed, these works highlight the importance of design-
ing FL, both HFL and VFL, to be resilient to malicious par-
ties. It is crucial to consider potential security and privacy
threats and to develop effective countermeasures to ensure
the integrity and reliability of FL systems.

Defense Strategies: To counter the attack vectors men-
tioned earlier, several defense strategies for HFL have been
proposed. These strategies focus on detecting malicious
updates from clients and feedback from the global model.

In [19], Fung et al. proposed a defense mechanism
that identifies poisoning attacks based on the diversity of
client updates during the distributed learning process. This
system is an improvement over prior work as it does not
impose constraints on the expected number of adversaries
and requires fewer assumptions about clients and their data.
In [46], Li et al. proposed a new framework for robust
federated learning, where the central server uses a powerful
detection model to identify and remove malicious model
updates.

BAFFLE, proposed in [4], is a method for detecting
backdoor attacks through feedback-based federated learn-
ing. The authors leveraged the data from multiple clients to
not only train the model but also uncover model poisoning.
Additionally, Wu et al. [87] proposed a federated pruning
method that removes redundant neurons in the network
and adjusts the extreme weight values of the model to
mitigate attacks.

In their work [7], [15], the authors proposed a method for
detecting secure faults in the Industrial Internet of Things
using HFL. They identified anomalous patterns in time
series data at the local level, and then used a reinforcement
learning-based merging strategy to securely aggregate these
uploads. Singh et al. also proposed a novel scheme called
FusionFedBlock in [68], which addresses centralization, pri-
vacy preservation, latency, and security in the Industrial
Internet of Things, leaving secure aggregation as the job of
miners in the blockchain.

Gao et al. considered a scenario in which the server is
malicious in their work [21]. For instance, the malicious
server may conduct dishonest data aggregation and return
incorrect aggregated gradients to all participants. To address
this problem, they proposed SVeriFL, which enables the

14

integrity of parameters uploaded by participants and the
correctness of aggregated results of the server to be verified.

Although the defenses in HFL impressively mitigate the
threat of existing attack vectors, they are not suitable for
VFL, especially for our attacks. This is because, in HFL, the
purpose of the defenses is to obtain a clean model, whereas
in VFL, our attacks aim to induce the top model to give
desired predictions at inference time, where the models have
already been employed.

8.2 Adversarial Attacks against DNNs

The adversarial attack happens at inference phase, where
an adversary crafts a specific perturbation to fool the tar-
get DNN. According to the coverage of the perturbation,
the adversarial attack can be divided into two categories:
sample-related adversarial attack and universal adversarial
attack.

Sample-related Adversarial Attack: The sample-related
adversarial attack refers to the kind of attack whose gen-
erated perturbation is correlated to the base sample. For
example, in image classification, given an input image, x,
e.g., ‘cat’, and the target DNN model f , the adversary
can change f(x)’s prediction from ‘cat’ to whatever he/she
desires, e.g., ‘dog’, with an adversarial sample xδ , which is
obtained from the formula Bϵ(x) = {xδ | ||xδ − x||p ≤ ϵ},
where Bϵ(x) denotes a norm ball at x, p denotes the Lp

norm, and ϵ denotes the bound. To make the attack stealthy,
the adversary often restricts ϵ to a small value. Formally, the
generation of such an adversarial attack is formulated as the
optimization objective:

min
xδ∈Bϵ(x)

ℓ(xδ, t; θ), (10)

where ℓ measures the loss of the adversarial sample’s pre-
diction with the target class yt; θ is the parameter of f .

Many works have studied the optimization of Eq. (10).
According to the adversary’s knowledge about θ, there are
two primary categories: white-box and black-box attacks.
In the white-box scenario, the adversary knows the model’s
structure and parameters. Therefore, the perturbation can be
optimized by the gradient descent method, such as FGSM
[25], PGD [57], and C&W [11]. In the black-box scenario,
the adversary only has access to the model’s output, which
means he/she cannot obtain the gradients. To address this,
there are two streams for approximating the gradients.
One class is the differential method [12], which calculates
the perturbation’s gradients through the difference of two
queries. The other class tries to approximate the gradients
by a surrogate model [46], which is trained on an auxiliary
dataset that is independently and identically distributed
(i.i.d) to the training dataset.

Universal Adversarial Attacks: The universal adversar-
ial attack refers to the kind of attack whose generated per-
turbation can work on a group of samples, namely Universal
Adversarial Perturbation (UAP).

In [60], Moosavidez-Dezfooli et al. found the existence of
a universal (image-agnostic) and small perturbation vector
that causes natural images to be misclassified with high
probability. However, the UAP generated by their method
only aims to cause misclassification of the model without

a target class. Therefore, it is not applicable for a malicious
adversary who has the same goal in our work.

In [10], Brown et al. proposed a more powerful attack to
create universal, robust, targeted adversarial image patches.
Their evaluation results show that with careful design of the
loss function, the generated adversarial patches can have
an impressive attack performance. Similarly, in [24], Goh et
al. found the neurons that are sensitive to specific features.
Specifically, they showed that putting a card that printed
‘iPod’ on a Granny Smith apple would make their model
misclassify it as iPod rather than an apple.

8.3 Poisoning Attacks against DNNs
This kind of attack aims to pollute DNNs during the training
phase. Previous works [35], [3] focus on decreasing the
model’s utility, e.g., making the model unable to converge
in training by modifying the training data. Recently, a line
of works [36], [66], [5] finds that the model can also be
controlled by a fixed pattern without sacrifice the main
task’s performance, called backdoor attack. According to the
control of labeling process, the backdoor attacks can also be
classified into two streams.

Label-controlled Backdoor Attack: This kind of attacks
aims to perturb the model’s parameters θ, denoted by θδ ,
with modifying a set of samples’ labels. To ensure the
evasiveness of the attack, the adversary should further limit
the perturbation on θ in a given function space F , which is
defined by Fϵ(θ) = {θδ | Ex∈Dval

[|f(x; θδ)− f(x; θ)| ≤ ϵ]},
where Dval refers to the validation dataset, and ϵ denotes
the error bound of the performance loss. Then, the objective
function becomes as:

min
θδ∈Fϵ(θ)

Ex∈Dpoisoned
[ℓ(x, yt; θδ)], (11)

where Dpoisoned denotes the set of poisoned inputs, yt is
the target label, and the loss function is defined similarly to
Eq. (10).

Optimizing Eq. (11) in practice can be challenging. As
a result, many studies have focused on polluting training
data [36], [54] to induce deviation in DNN parameters or
modifying DNN structures [74]. In the former type of attack,
the adversary limits perturbations to θ by reducing the
number of poisoned samples. In the latter type of attack,
the adversary modifies neurons or adds extra malicious
structures to DNN models.

Clean-label Backdoor Attack: In [66], the researchers
believed that an adversary could not control the labeling
process, and even if he/she does, the mislabelled samples
are easy to recognize. Therefore, they proposed a more
stealthy method via feature collision. That is, the adversary
first picks up a sample from the desired class, e.g., an image
of ‘cat’, and then adds an invisible perturbation to it. The
perturbation is used to make this poisoned sample’s latent
embedding as close to that of the target instance (e.g., an
image of ‘dog’) as possible. Then, when the target instance
is being inferred, it will be misclassified as ‘cat’.

Formally, let f be the model without the last softmax
layer, x be the sample from the desired class, and xt be the
target sample. A poisoning sample xp is crafted as follows:

min
xp

∥f(xp)− f(xt)∥22 + β ∥xp − x∥22 , (12)

15

where β is a hyperparameter that controls the similarity
between the poisoning sample xp and original sample x.
Usually, the clean-label attack needs a number of poisoning
samples for one target instance.

8.4 Remark
Our work is the first to explore how to manipulate VFL
model’s predictions by replacing features as one party. To
enhance the effectiveness of our attacks, we draw upon
valuable insights from the domains of adversarial and
poisoning attacks. Specifically, we adopt an optimization-
based approach to generate features, inspired by adversarial
attacks. We also enhance the power of the features by
increasing their frequency in samples of the target class, in-
spired by poisoning attacks. However, directly transferring
these attacks to VFL does not work. The following are the
limitations of these attacks.

Limitation of Adversarial Attacks: Existing adversarial
attacks [25], [16], [61], [59], [12], [32], [10], [70], [45] typically
assume a centralized setting where the adversary has access
to complete features. White-box attacks [25], [16], [61], [59],
[45] further assume full access to the model, which is not
applicable in VFL. In contrast, black-box attacks [12], [32],
[10], [70] are designed to address the challenge of limited
access to the model, relying on posteriors to guide optimiza-
tion. For image classification, [10], [70] have demonstrated
success in minimizing the number of modified pixels, even
down to a single pixel.

However, in VFL, the adversary is constrained to mod-
ifying only their own features, which may not be given
sufficient importance in the model’s prediction. Addition-
ally, our attacks aim to operate on a class of samples with
a single perturbation, which falls outside the scope of the
above attacks.

Limitation of Backdoor Attacks: In scenarios where the
adversary owns the labels (typically the initiator of a VFL
model), poisoning attacks are easy to implement, and their
success rates are consistent with those in the centralized
setting [51]. Hence, we do not discuss this scenario as it
is relatively trivial.

The adversary can also be the party who provides only
features [84], [85]. For example, in Fig. 1, a financial com-
pany is paid to provide user information for the bank. In this
case, backdoor attacks that rely on modifying the labels of
poisoning samples are not applicable, as no label informa-
tion is available. Although the clean-label backdoor attack
does not modify the labels, the adversary’s partial control
of features makes it much harder to manipulate a class of
samples’ embeddings to the target instance’s position.

TABLE 7 shows the difference of existing work and our
work, which is also a brief summary of above discussion. In
summary, our work highlights that in VFL, the challenge of
the BGP is much more severe than expected, as the adver-
sary can leverage both adversarial and poisoning attacks to
enhance their abilities.

9 DISCUSSION

9.1 Bypass Normalization
The evaluation of layer normalization’s impact on our attack
shows it is an efficient way to defend black-box attacks like

ZOO. The key to its success is to transform the perturbed
input so that the adversary cannot approximate the gradi-
ents. Two possible attack strategies may solve the challenge.
One is based on the perturbation’s transferability across
models [64]. Another uses the heuristic search for generating
perturbations [9].

Brendel et al. [9] suggested that adversarial sample
generation can be achieved through heuristic search, and
similar ideas are explored in other works such as [83], [75].
We plan to investigate these approaches in future work.

9.2 Integrated Defense

The defenses we evaluated were proposed for traditional
scenarios and targeted specific types of attacks. However,
our experiments demonstrate that even if a defense success-
fully prevents one aspect of our attack, such as perturbation
generation, it may still be vulnerable to another aspect,
such as poisoning attacks. This observation suggests a new
direction for defense design, where we should consider both
attack vectors to provide more robust protection for DNN-
based systems. By taking a holistic approach to defense, we
may be able to create defenses that can withstand a wider
range of attacks and provide better overall security.

9.3 Consensus in VFL

In VFL, the lack of a clear definition of consensus distin-
guishes it from well-defined BGPs. Typically, the main task’s
performance during training serves as an indicator of the
participants’ honesty and determines whether the model’s
prediction is reliable. However, this leaves the security
issue to be addressed at inference time. Specifically, when
a consensus is made, such as the top model’s predictions,
it becomes challenging to determine whether the model’s
prediction is correct without human intervention. Moreover,
in a two-party scenario, it is difficult to distinguish whether
a participant is cheating if the prediction is incorrect.

To address this issue, a promising approach may be to
pre-define clustering centers for each class during training,
as suggested by Hoe et al. [31]. At inference time, em-
beddings whose distance from the center is larger than a
threshold could be judged as invalid. We plan to investigate
the design of a new VFL framework that incorporates this
approach in our future work.

10 CONCLUSION

Our work exposes the dangers of malicious manipulation
of VFL models by a single party using two attacks, i.e., the
replay attack and the generation attack. Additionally, the
poisoning phase demonstrates how the adversary’s power
can increase by perturbing the top model’s parameters.
We also investigate existing defense methods and assess
two strategies that can be incorporated during training
to counteract our attacks. Experimental results reveal the
effectiveness of our attacks and emphasize the urgency to
develop advanced defense techniques to safeguard VFL
models.

16

TABLE 7
Summary and comparison of existing work and our work. In the ‘Attack Vector’ column, two existing attack vectors and ours are presented. In the

‘Attack Scene’ column, ‘CL’ denotes Centralized Learning, ‘HFL’ denotes Horizontal Federated Learning, and ‘VFL’ denotes Vertical Federated
Learning. In the ‘Attack Assumption’ column, the attacks are further categorize according to their assumptions. In the ‘Attack Phase’ column, the

attacking phase is presented. In the ‘Attack Coverage’ column, we summarize the target coverage of the attack. Adversarial attacks typically target
a specific sample, while other attacks aim to a group of samples. In the ‘Attack Operation’ column, it provides a brief introduction to the

corresponding attack operation. Finally, in the ‘References’ column, representative relevant work are presented.

Attack Vector Attack Scene Attack Assumption Attack Phase Attack Coverage Attack Operation References

Adversarial Attack CL White-box: Target model’s parameters Inference Single sample Add adversarial perturbation [25], [16], [61], [59]
Black-box: Target model’s output Inference Single sample Add adversarial perturbation [12], [32], [10], [70]

Backdoor Attack CL Label-controlled: Polluting dataset through modifying samples and labels Training Group of samples Add trigger [36], [54], [74]
Clean-label: Polluting dataset through modifying samples Training Group of samples Add trigger [66], [77]

HFL Control the client model’s parameters used in aggregation Training Group of samples Replace uploaded parameters [5], [88]

Ours VFL Control the bottom model’s output used in aggregation Inference Group of samples Replace uploaded features

ACKNOWLEDGMENTS

This work was partly supported by the National Key
Research and Development Program of China under No.
2022YFB3102100 and NSFC under No. 62102360.

REFERENCES

[1] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and
D. Yu, “Convolutional neural networks for speech recognition,”
IEEE/ACM Transactions on audio, speech, and language processing,
vol. 22, no. 10, pp. 1533–1545, 2014.

[2] H. Afriat, S. Dvir-Gvirsman, K. Tsuriel, and L. Ivan, ““this is
capitalism. it is not illegal”: Users’ attitudes toward institutional
privacy following the cambridge analytica scandal,” The Informa-
tion Society, vol. 37, no. 2, pp. 115–127, 2020.

[3] S. Alfeld, X. Zhu, and P. Barford, “Data poisoning attacks against
autoregressive models,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, 2016.

[4] S. Andreina, G. A. Marson, H. Möllering, and G. Karame, “Baffle:
Backdoor detection via feedback-based federated learning,” in
2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2021, pp. 852–863.

[5] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov,
“How to backdoor federated learning,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2020, pp. 2938–2948.

[6] E. Barsoum, C. Zhang, C. Canton Ferrer, and Z. Zhang, “Train-
ing deep networks for facial expression recognition with crowd-
sourced label distribution,” in ACM International Conference on
Multimodal Interaction (ICMI), 2016.

[7] A. Belhadi, Y. Djenouri, G. Srivastava, A. Jolfaei, and J. C.-W. Lin,
“Privacy reinforcement learning for faults detection in the smart
grid,” Ad Hoc Networks, vol. 119, p. 102541, 2021.

[8] D. P. Bertsekas, “Nonlinear programming,” Journal of the Opera-
tional Research Society, vol. 48, no. 3, pp. 334–334, 1997.

[9] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning mod-
els,” 2018.

[10] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adver-
sarial patch,” 2018.

[11] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in 2017 ieee symposium on security and privacy
(sp). IEEE, 2017, pp. 39–57.

[12] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo,”
Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, Nov 2017.

[13] M. Dahl, J. Mancuso, Y. Dupis, B. Decoste, M. Giraud,
I. Livingstone, J. Patriquin, and G. Uhma, “Private
machine learning in tensorflow using secure computation,”
CoRR, vol. abs/1810.08130, 2018. [Online]. Available:
http://arxiv.org/abs/1810.08130

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” 2019.

[15] Y. Djenouri, A. Belhadi, G. Srivastava, U. Ghosh, P. Chatterjee,
and J. C.-W. Lin, “Fast and accurate deep learning framework for
secure fault diagnosis in the industrial internet of things,” IEEE
Internet of Things Journal, vol. 10, no. 4, pp. 2802–2810, 2023.

[16] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting
adversarial attacks with momentum,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 9185–
9193.

[17] C. Fiesler, N. Beard, and B. C. Keegan, “No robots, spiders, or
scrapers: Legal and ethical regulation of data collection methods
in social media terms of service,” in Proceedings of the international
AAAI conference on web and social media, vol. 14, 2020, pp. 187–196.

[18] C. Fu, X. Zhang, S. Ji, J. Chen, J. Wu, S. Guo, J. Zhou, A. X. Liu,
and T. Wang, “Label inference attacks against vertical federated
learning,” in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022, pp. 1397–1414.

[19] C. Fung, C. J. Yoon, and I. Beschastnikh, “Mitigating sybils in
federated learning poisoning,” arXiv preprint arXiv:1808.04866,
2018.

[20] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-
adversarial training of neural networks,” The journal of machine
learning research, vol. 17, no. 1, pp. 2096–2030, 2016.

[21] H. Gao, N. He, and T. Gao, “Sverifl: Successive verifiable federated
learning with privacy-preserving,” Information Sciences, vol. 622,
pp. 98–114, 2023.

[22] Y. Gao, B. G. Doan, Z. Zhang, S. Ma, J. Zhang, A. Fu, S. Nepal, and
H. Kim, “Backdoor attacks and countermeasures on deep learning:
A comprehensive review,” arXiv preprint arXiv:2007.10760, 2020.

[23] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“Strip: A defence against trojan attacks on deep neural networks,”
in Proceedings of the 35th Annual Computer Security Applications
Conference, ser. ACSAC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 113–125.

[24] G. Goh, N. C. †, C. V. †, S. Carter, M. Petrov, L. Schubert,
A. Radford, and C. Olah, “Multimodal neurons in artificial neu-
ral networks,” Distill, 2021, https://distill.pub/2021/multimodal-
neurons.

[25] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” arXiv preprint arXiv:1412.6572,
2014.

[26] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. Mc-
Daniel, “On the (statistical) detection of adversarial examples,”
arXiv preprint arXiv:1702.06280, 2017.

[27] C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten, “Countering
adversarial images using input transformations,” arXiv preprint
arXiv:1711.00117, 2017.

[28] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: A factorization-
machine based neural network for ctr prediction,” in IJCAI, 2017.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2015.

[30] F. D. Herdiani, “Analysis of abuse and fraud in the legal and
illegal online loan fintech application using the hybrid method,”
Enrichment: Journal of Management, vol. 11, no. 2, pp. 486–490, 2021.

[31] J. T. Hoe, K. W. Ng, T. Zhang, C. S. Chan, Y.-Z. Song, and T. Xiang,
“One loss for all: Deep hashing with a single cosine similarity
based learning objective,” in Advances in Neural Information Pro-
cessing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021,
pp. 24 286–24 298.

[32] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversar-
ial attacks with limited queries and information,” in Proceedings of
the 35th International Conference on Machine Learning, ser. Proceed-
ings of Machine Learning Research, J. Dy and A. Krause, Eds.,
vol. 80. PMLR, 10–15 Jul 2018, pp. 2137–2146.

17

[33] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and
A. Madry, “Adversarial examples are not bugs, they are features,”
in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, Eds., vol. 32. Curran Associates, Inc., 2019.

[34] L. H. Iwaya, S. Fischer-Hübner, R.-M. Åhlfeldt, and L. A. Martucci,
“mhealth: A privacy threat analysis for public health surveillance
systems,” in 2018 IEEE 31st International Symposium on Computer-
Based Medical Systems (CBMS). IEEE, 2018, pp. 42–47.

[35] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and
B. Li, “Manipulating machine learning: Poisoning attacks and
countermeasures for regression learning,” in 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 2018, pp. 19–35.

[36] M. Jagielski, G. Severi, N. P. Harger, and A. Oprea, “Subpopulation
data poisoning attacks,” arXiv preprint arXiv:2006.14026, 2020.

[37] D. Kiselbach and C. E. Joern, “New consumer product safety laws
in canada and the united states: Business on the border,” Global
Trade and Customs Journal, vol. 7, no. 1, 2012.

[38] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim,
and L. van der Maaten, “Crypten: Secure multi-party computation
meets machine learning,” in arXiv 2109.00984, 2021.

[39] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” Toronto, ON, Canada, Tech. Rep., 2009.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, pp. 1097–1105, 2012.

[41] L. Lamport, “Solved problems, unsolved problems and
non-problems in concurrency,” SIGOPS Oper. Syst. Rev.,
vol. 19, no. 4, p. 34–44, oct 1985. [Online]. Available:
https://doi.org/10.1145/858336.858339

[42] L. Lamport, R. Shostak, and M. Pease, The Byzantine
Generals Problem. New York, NY, USA: Association for
Computing Machinery, 2019, p. 203–226. [Online]. Available:
https://doi.org/10.1145/3335772.3335936

[43] P. D. Lax and M. S. Terrell, Calculus with applications. Springer,
2014.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[45] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “TextBugger: Generating
adversarial text against real-world applications,” in Proceedings
2019 Network and Distributed System Security Symposium. Internet
Society, 2019.

[46] S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen, “Learning to detect
malicious clients for robust federated learning,” arXiv preprint
arXiv:2002.00211, 2020.

[47] D. Liang, C.-C. Lu, C.-F. Tsai, and G.-A. Shih, “Financial ratios
and corporate governance indicators in bankruptcy prediction:
A comprehensive study,” European Journal of Operational Research,
vol. 252, no. 2, pp. 561–572, 2016.

[48] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in Research
in Attacks, Intrusions, and Defenses: 21st International Symposium,
RAID 2018, Heraklion, Crete, Greece, September 10-12, 2018, Proceed-
ings 21. Springer, 2018, pp. 273–294.

[49] Y. Liu, T. Fan, T. Chen, Q. Xu, and Q. Yang, “Fate: An industrial
grade platform for collaborative learning with data protection,”
Journal of Machine Learning Research, vol. 22, no. 226, pp. 1–6, 2021.

[50] Y. Liu, Y. Kang, X. Zhang, L. Li, Y. Cheng, T. Chen, M. Hong, and
Q. Yang, “A communication efficient vertical federated learning
framework,” arXiv preprint arXiv:1912.11187, 2019.

[51] Y. Liu, Z. Yi, and T. Chen, “Backdoor attacks and defenses in
feature-partitioned collaborative learning,” 2020.

[52] Y. Liu, T. Zou, Y. Kang, W. Liu, Y. He, Z. qian Yi, and
Q. Yang, “Batch label inference and replacement attacks in black-
boxed vertical federated learning,” 2021. [Online]. Available:
https://arxiv.org/abs/2112.05409

[53] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “Abs:
Scanning neural networks for back-doors by artificial brain stimu-
lation,” in Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, ser. CCS ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 1265–1282.

[54] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in 25th Annual Network
and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-221, 2018. The Internet Society, 2018.

[55] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack
on model predictions in vertical federated learning,” in 37th IEEE
International Conference on Data Engineering, ICDE 2021, Chania,
Greece, April 19-22, 2021. IEEE, 2021, pp. 181–192.

[56] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings
of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Portland, Oregon, USA:
Association for Computational Linguistics, June 2011, pp. 142–150.

[57] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
arXiv preprint arXiv:1706.06083, 2017.

[58] A. Mahindru, “Android permission dataset,” 2018.
[59] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard,

“Universal adversarial perturbations,” 2017.
[60] ——, “Universal adversarial perturbations,” 2017.
[61] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a

simple and accurate method to fool deep neural networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 2574–2582.

[62] A. Mustafa, S. Khan, M. Hayat, R. Goecke, J. Shen, and L. Shao,
“Adversarial defense by restricting the hidden space of deep
neural networks,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 3385–3394.

[63] T. Pang, C. Du, Y. Dong, and J. Zhu, “Towards robust detection
of adversarial examples,” in Advances in Neural Information Pro-
cessing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates,
Inc., 2018.

[64] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in
machine learning: from phenomena to black-box attacks using
adversarial samples,” 2016.

[65] P. Qiu, X. Zhang, S. Ji, T. Du, Y. Pu, J. Zhou, and T. Wang, “Your
labels are selling you out: Relation leaks in vertical federated
learning,” IEEE Transactions on Dependable and Secure Computing,
pp. 1–16, 2022.

[66] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Du-
mitras, and T. Goldstein, “Poison frogs! targeted clean-label poi-
soning attacks on neural networks,” in Proceedings of the 32nd
International Conference on Neural Information Processing Systems,
ser. NIPS’18. Red Hook, NY, USA: Curran Associates Inc., 2018,
p. 6106–6116.

[67] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer,
L. S. Davis, G. Taylor, and T. Goldstein, “Adversarial training for
free!” arXiv preprint arXiv:1904.12843, 2019.

[68] S. K. Singh, L. T. Yang, and J. H. Park, “Fusionfedblock: Fusion of
blockchain and federated learning to preserve privacy in industry
5.0,” Information Fusion, vol. 90, pp. 233–240, 2023.

[69] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, p.
1929–1958, Jan. 2014.

[70] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Transactions on Evolutionary Compu-
tation, vol. 23, no. 5, pp. 828–841, oct 2019.

[71] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you re-
ally backdoor federated learning?” arXiv preprint arXiv:1911.07963,
2019.

[72] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks
for object detection,” in Advances in Neural Information Processing
Systems, C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Weinberger, Eds., vol. 26. Curran Associates, Inc., 2013.

[73] J. Tang, C. Deng, and G. Huang, “Extreme learning machine for
multilayer perceptron,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 27, pp. 809–821, 2016.

[74] R. Tang, M. Du, N. Liu, F. Yang, and X. Hu, “An embarrassingly
simple approach for trojan attack in deep neural networks,” in
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 218–228.

[75] R. Taori, A. Kamsetty, B. Chu, and N. Vemuri, “Targeted adversar-
ial examples for black box audio systems,” in 2019 IEEE Security
and Privacy Workshops (SPW). IEEE, 2019, pp. 15–20.

[76] I. Tenney, D. Das, and E. Pavlick, “Bert rediscovers the classical
nlp pipeline,” arXiv preprint arXiv:1905.05950, 2019.

[77] A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor at-
tacks,” 2019.

18

[78] L. G. Valiant, “A theory of the learnable,” Commun. ACM, vol. 27,
no. 11, p. 1134–1142, nov 1984.

[79] P. Voigt and A. Von dem Bussche, “The eu general data protec-
tion regulation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer
International Publishing, 2017.

[80] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and
B. Y. Zhao, “Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks,” in 2019 IEEE Symposium on Security
and Privacy (SP). IEEE, 2019, pp. 707–723.

[81] G. Wang, “Interpret federated learning with shapley values,” 2019.
[82] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal,

J.-y. Sohn, K. Lee, and D. Papailiopoulos, “Attack of the tails:
Yes, you really can backdoor federated learning,” arXiv preprint
arXiv:2007.05084, 2020.

[83] L. Wang, K. Yang, W. Wang, R. Wang, and A. Ye, “Mgaattack:
Toward more query-efficient black-box attack by microbial genetic
algorithm,” in Proceedings of the 28th ACM International Conference
on Multimedia, 2020, pp. 2229–2236.

[84] Webank, “A case of traffic violations insurance-using federated
learning,” 2020, https://www.fedai.org/cases.

[85] ——, “Utilization of FATE in risk management of credit in small
and micro enterprises,” 2020, https://www.fedai.org/cases.

[86] H. Weng, J. Zhang, F. Xue, T. Wei, S. Ji, and Z. Zong, “Privacy
leakage of real-world vertical federated learning,” 2021.

[87] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor attacks
in federated learning,” 2021.

[88] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “Dba: Distributed backdoor
attacks against federated learning,” in International Conference on
Learning Representations, 2019.

[89] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[90] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” 2018.

[91] J. Zhou, C. Chen, L. Zheng, H. Wu, J. Wu, X. Zheng, B. Wu,
Z. Liu, and L. Wang, “Vertically federated graph neural network
for privacy-preserving node classification,” 2021.

[92] A. Ziller, A. Trask, A. Lopardo, B. Szymkow, B. Wagner,
E. Bluemke, J.-M. Nounahon, J. Passerat-Palmbach, K. Prakash,
N. Rose, T. Ryffel, Z. N. Reza, and G. Kaissis, PySyft: A Library for
Easy Federated Learning. Cham: Springer International Publishing,
2021, pp. 111–139.

Pengyu Qiu is currently a Ph.D. student in the
College of Computer Science and Technology at
Zhejiang University. He received his Bachelor’s
degree from Zhejiang University. His current re-
search interests include AI security, adversarial
learning.

Xuhong Zhang is a ZJU 100-Young Profes-
sor with the School of Software Technology at
Zhejiang University. He received his Ph.D. in
Computer Engineering from University of Cen-
tral Florida in 2017 . His research interests in-
clude distributed big data and AI systems, big
data mining and analysis, data-driven security,
AI and Security. He has authored over 20 pub-
lications in premier journals and conferences
such as TDSC, TPDC, IEEE S&P, USENIX Se-
curity, ACM CCS, NDSS, VLDB, etc.

Shouling Ji is a Qiushi Distinguished Profes-
sor in the College of Computer Science and
Technology at Zhejiang University. He received
a Ph.D. degree in Electrical and Computer En-
gineering from Georgia Institute of Technology
and a Ph.D. degree in Computer Science from
Georgia State University. His current research
interests include Data-driven Security and Pri-
vacy, AI Security and Software and System Se-
curity. He is a member of ACM and IEEE, and
a senior member of CCF. He was a Research

Intern at the IBM T. J. Watson Research Center. Shouling is the recipient
of the 2012 Chinese Government Award for Outstanding Self-Financed
Students Abroad and 10 Best/Outstanding Paper Awards, including
ACM CCS 2021.

Changjiang Li is currently a Ph.D. student in the
College of Information Science and Technology
at Pennsylvania State University. He received
the Master degree from the School of Com-
puter Science at Zhejiang University in 2020. His
research interest includes Adversarial Machine
Learning, AI privacy.

Yuwen Pu received his Ph.D. in the School
of Big Data & Software Engineering from
Chongqing University in 2021. He is a Post-
Doctor in the College of Computer Science and
Technology at Zhejiang University. His research
interests include big data security and privacy-
preserving, AI security.

Xing Yang is a researcher at the State Key Lab-
oratory of Pulsed Power Laser Technology, Na-
tional University of Defense Technology. He re-
ceived his BS, MS and Ph.D. degrees from Hefei
Electronic Engineering Institute in 2006, 2009,
and 2012 respectively. Currently, his research
interests mainly focus on optoelectronic engi-
neering, artificial intelligence, and cyberspace
security.

Ting Wang is an assistant professor in the Col-
lege of Information Sciences and Technology at
Penn State. He received his Ph.D. degree from
Georgia Tech. He conducts research at the in-
tersection of data science and privacy & secu-
rity. His ongoing work focuses on making ma-
chine learning systems more practically usable
through improving their Security Assurance, Pri-
vacy Preservation and Decision-Making Trans-
parency.

