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Adversarial CAPTCHASs

Chenghui Shi, Xiaogang Xu, Shouling Ji, Kai Bu, Jianhai Chen, Raheem Beyah, and Ting Wang

Abstract—Following the principle of to set one’s own spear against one’s own shield, we study how to design adversarial CAPTCHAs
in this paper. We first identify the similarity and difference between adversarial CAPTCHA generation and existing hot adversarial
example (image) generation research. Then, we propose a framework for text-based and image-based adversarial CAPTCHA
generation on top of state-of-the-art adversarial image generation techniques. Finally, we design and implement an adversarial
CAPTCHA generation and evaluation system, named aCAPTCHA, which integrates 10 image preprocessing techniques, 9 CAPTCHA
attacks, 4 baseline adversarial CAPTCHA generation methods, and 8 new adversarial CAPTCHA generation methods. To examine the
performance of aCAPTCHA, extensive security and usability evaluations are conducted. The results demonstrate that the generated
adversarial CAPTCHAs can significantly improve the security of normal CAPTCHAs while maintaining similar usability. To facilitate the
CAPTCHA security research, we also open source the aCAPTCHA system, including the source code, trained models, datasets, and

the usability evaluation interfaces.

Index Terms—CAPTCHA, Adversarial Image, Deep Learning, Usable Security.
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INTRODUCTION

CAPTCHA (Completely Automated Public Turing test
to tell Computers and Humans Apart) is a type of challenge-
response test in computing which is used to distinguish
between human and automated programs (machines). The
first generation of CAPTCHA was invented in 1997, while
the term “CAPTCHA” was first coined in 2002 [1] [2].
Ever since its invention, CAPTCHA has been widely used
to improve the security of websites and various online
applications to prevent the abuse of online services, such
as preventing phishing, bots, spam, and Sybil attacks.

Existing CAPTCHA Schemes. In general, existing pop-
ular CAPTCHAS can be classified into four categories:

(1) Text-based CAPTCHA. Text-based CAPTCHA schemes
ask users to recognize a string of distorted characters
with/without an obfuscated background [7] [8]. Due to its
simplicity and high efficiency, text-based CAPTCHA is the
most widely deployed and acceptable form up to now and
in a foreseeable future [7] [8].

(2) Image-based CAPTCHA. Image-based CAPTCHA is
another popular scheme which usually asks users to select
one or more images with specific semantic meanings from
a couple of candidate images [25]. It is motivated by the
intuition that compared with a string of characters, images
carry much richer information and have a larger variation
space. Meanwhile, there are still many hard, open prob-
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lems in image perception and interpretation, especially in
the context of noisy environments. Thus, to some extent,
image-based CAPTCHA is more secure than text-based
CAPTCHA. Nevertheless, to the best of our knowledge, a
comprehensive comparative analysis on the security and
usability of text- and image-based CAPTCHA:s is still void.
Recently, many variants of image-based CAPTCHAs were
proposed, such as slide-based CAPTCHA which asks users
to slide a puzzle to the right part of an image [56], click-
based CAPTCHA which asks users to click specific semantic
regions of an image [55], etc.

(3) Audio-based CAPTCHA. Audio-based CAPTCHA asks
users to recognize the voice contents in a piece of au-
dio [1] [2]. In most of the practical applications, audio-
based CAPTCHA is often used together with text-based
CAPTCHA as a complementary means, mainly because of
the usability issue, especially for non-native users of the
audio language.

(4) Video-based CAPTCHA. Video-based CAPTCHA is a
new kind of CAPTCHA that asks users to finish a content-
based video labeling task [34]. It is usually more complex
and takes more time for users to correctly finish compared
with other forms of CAPTCHAs. Thus, it is not widely
adopted and seldom to see in practice.

There are also other different proposals for CAPTCHA
design, e.g., game-based CAPTCHA [54] and inference-
based CAPTCHA [57]. However, they are not widely de-
ployed yet due to various reasons, e.g., security issues,
accessability limitations, and performance issues. In this
paper, our study mainly focus on text- and image-based
CAPTCHAs. The reason is evident: they are the most ac-
cepted and widely used CAPTCHAs up to now and in a
foreseeable future. The study of their security and usability
has more potential implications for practical applicaitons.

Issues of CAPTCHASs and Motivation. Generally speak-
ing, CAPTCHA can be evaluated according to its security
performance, which refers to the strength and resilience of
CAPTCHAs against various attacks, and usability perfor-



mance, which refers to how user friendly the CAPTCHAs
are [1] [2]. From the security perspective, it is not a news
to see reports that a CAPTCHA scheme is broken by some
attacks [1] [2]. The evolution of CAPTCHAs always moves
forward in a spiral, constantly accompanied by emerging
attacks. For text-based CAPTCHAs, the security goal of
its earliest version is to defend against Optical Character
Recognition (OCR) based attacks. Therefore, many distor-
tion techniques (e.g., varied fonts, varied font sizes, and
rotation) are applied. Over the last decade, machine learning
algorithms become more and more powerful. Following the
seminal work which demonstrates that computers turn to
outperform humans in recognizing characters, even under
severe distortion, many successful attacks to text-based
CAPTCHAs were proposed, including both generic attacks
which target multiple text-based CAPTCHAs [7] [8], and
specialized attacks which targeted one kind of text-based
CAPTCHAs [24]. In spite of that it is possible to improve
the security of text-based CAPTCHAs by increasing the
distortion and obfuscation levels, their usability will be
significantly affected [7] [8].

The same dilemma exists for image-based CAPTCHAs
either. With the prosperity of machine learning research,
especially recent deep learning progress, Deep Neural Net-
works (DNNs) have achieved impressive success in image
classification/recognization, matching or even outperform-
ing the cognitive ability of humans in complex tasks with
thousands of classes [16]. Along with such progress, many
DNN-based attacks have been proposed recently to crack
image-based CAPTCHAs with very high success proba-
bility, as demonstrated by a large number of reports [31].
To defend against existing attacks, the intuition is to rely
on high-level image semantics and develop more complex
image-based CAPTCHAs, e.g., recognizing an image object
by utilizing its surrounding context [30]. Leaving the secu-
rity gains aside, such designs usually induce poor usability
[1] [2]. To make things worse, unlike text-based CAPTCHAs,
it is difficult, if not impossible, for designers to generate
specific images with required semantical meanings through
certain rules. In other words, it is too labor-intensive to
collect labeled images in large scale.

In summary, existing text- and image-based CAPTCHAs
are facing challenges from both the security and the usabil-
ity perspectives. It is desired to develop a new CAPTCHA
scheme that achieves high security while preserving proper
usability, i.e., seeks a better balance between security and
usability.

Our Methodology and Contributions. To address the
dilemma of existing text- and image-based CAPTCHAs,
we start from analyzing state-of-the-art attacks. It is not
surprising that most, if not all, of the attacks to text- and
image-based CAPTCHAs are based on machine learning
techniques, especially the latest and most powerful ones,
which are mainly based on deep learning, typically, CNNS.
This is mainly because the development of CAPTCHA
attacks roots in the progress of machine learning research,
as we discussed before.

On the other hand, with the progress of machine learning
research, researchers found that many machine learning
models, especially neural networks, are vulnerable to adver-
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sarial examples, which are defined as elaborately (maliciously,
from the model’s perspective) crafted inputs that are imper-
ceptible to humans but that can fool the machine learning
model into producing undesirable behavior, e.g., producing
incorrect outputs [39]]. Inspired by this fact, is that possible
for us to design a new kind of CAPTCHAs by proactively
attacking existing CAPTCHA attacks, i.e., “fo set one’s own
spear against one’s own shield”?

Following this inspiration, we study the method to gen-
erate text- and image-based CAPTCHAs based on adversar-
ial learning, i.e., text-based adversarial CAPTCHAs and image-
based adversarial CAPTCHAs, that are resilient to state-of-the-
art CAPTCHA attacks and meanwhile preserve high usabil-
ity. Specifically, we have three main objectives in the design:
(1) security, which implies that the developed CAPTCHAs
can effectively defend against state-of-the-art attacks, espe-
cially the powerful deep learning based attacks; (2) usability,
which implies that the developed CAPTCHAs should be
usable in practice and maintain high user experience; and
(3) compatibility, which implies that the proposed CAPTCHA
generation scheme is compatible with existing text- and
image-based CAPTCHA deployment and applications.

With the above goals in mind, we study the method to
inject human-tolerable, preprocessing-resilient (i.e., cannot
be removed by CAPTCHA attacks) perturbations to tradi-
tional CAPTCHAs. Specifically, we design and implement a
novel system aCAPTCHA to generate and evaluate text- and
image-based adversarial CAPTCHAs.

Our main contributions can be summarized as follows.

(1) Following our design principle, we propose a
framework for generating adversarial CAPTCHAs on top
of existing adversarial example (image) generation tech-
niques. Specifically, we propose four text-based and four
image-based adversarial CAPTCHA generation methods.
Then, we design and implement a comprehensive ad-
versarial CAPTCHA generation and evaluation system,
named aCAPTCHA, which integrates 10 image preprocess-
ing techniques, 9 CAPTCHA attacks, 4 baseline adversar-
ial CAPTCHA generation methods, and 8 new adversarial
CAPTCHA generation methods. aCAPTCHA can be used
for the generation, security evaluation, and usability evalua-
tion of both text- and image-based adversarial CAPTCHAs.

(2) To examine the performance of the adversarial
CAPTCHAs generated by aCAPTCHA, we conducted ex-
tensive security and usability evaluations. The results
demonstrate that the generated adversarial CAPTCHAS can
significantly improve the security of normal CAPTCHAs
while maintaining similar usability.

(3) We open source the aCAPTCHA system at [60],
including the source code, trained models, datasets, and
the interfaces for usability evaluation. It is expected that
aCAPTCHA can facilitate the CAPTCHA security research
and can shed light on designing more secure and usable
adversarial CAPTCHAs.

2 BACKGROUND

In this section, we briefly introduce adversarial examples
and the corresponding defense technologies.



2.1 Adversarial Example

Neural networks have achieved great performance on a
wide range of application domains, especially, image recog-
nition. However, recent work has discovered that the ex-
isting machine learning models including neural networks
are vulnerable to adversarial examples. Specifically, suppose
we have a classifier F' with model parameters . Let x
be an input to the classifier with corresponding ground
truth prediction y. An adversarial example 2’ is an instance
in the input space that is close to = according to some
distance metric d(z, z"), and causes classifier Fy to produce
an incorrect output. Adversarial examples that affect one
model often affect another model, even if the two models
have different architectures or were trained on different
training sets, as long as both models were trained to perform
the same task [43].

Prior work that considers adversarial examples under a
number of threat models can be broadly classified into two
categories: white-box attacks where the adversary has full
knowledge of the model Fp including the model architecture
and parameters, and black-box attacks, where the adversary
has no or little knowledge of the model Fj. The construction
of an adversarial example depends mainly on the gradient
information of the target model. In the white-box setting
[10], [11]], [41], the gradient of the model is always visible
to the attacker. Thus, it is easy for an attacker to generate
adversarial examples. In the black-box setting [43]], [44], [50],
attackers cannot get gradient information directly. There
are usually two ways to generate adversarial examples in
this condition. The first one is to approximate the gradient
information by query operations [50], i.e., sending an image
to the target model and getting the output distribution.
After many rounds of queries, attackers can approximate the
target model’s gradient and generate adversarial examples.
The second way is to take advantage of the transferability
of adversarial examples [43]. As we mentioned above, ad-
versarial examples that affect one model can often affect an-
other model. An attacker could trains his own local model,
generates adversarial examples against the local model by
white-box methods, and transfers them to a victim model
which he has limited knowledge. In the paper, we rely
on the second method refers to the black-box setting to
generate adversarial CAPTCHAs against machine learning
based attacks.

2.2 Defense Methods

Due to the security threats caused by adversarial examples,
improving the robustness of deep learning networks against
adversarial perturbation has been an active field of research.
Various defensive techniques against adversarial examples
have been proposed. We roughly divide them into three
categories.

(1) Adversarial Training [41], [45]. The idea is simple
and effective. One can retrain neural networks directly
on adversarial examples until the model learns to classify
them correctly. This makes the network robust against the
adversarial examples in the test set and improves the overall
generalization capability of the network. However, it does
not resolve the problem completely, as adversarial training
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Fig. 1. System overview of aCAPTCHA.

can only be effective against specific adversarial example
generation algorithms that are used in the retraining phase.
Moreover, adversarial training has been shown to be diffi-
cult at a large scale, e.g., the ImageNet scale.

(2) Gradient Masking [42], [49]. This method tries to
prevent an attacker from accessing the useful gradient in-
formation of a model. As we mentioned, the construction
of an adversarial example depends mainly on the gradient
information of the target model. Without useful gradient
information, the attackers are hard to perform an attack.
However, gradient masking is usually not effective against
black-box attacks, because an adversary could run his attack
algorithm on an easy-to-attack model, and transfers these
adversarial examples to the hard-to-attack model.

(3) Input Transformation [47], [48]], [51]. This kind of trans-
formation method generally does not change the structure
of a neural network. The main idea is to preprocess or
transform the input data, such as image cropping, rescaling
and bit-depth reduction, in order to remove adversarial per-
turbation, and then feed the transformed image through an
unmodified classifier. This method is easy to circumvent by
white-box attacks because attackers can modify the attack
algorithm in the mirror, e.g., considering similar operations
during adversarial examples generation. In the black-box
attacks, it could provides good protection. However, input
transformation cannot eliminate adversarial perturbation in
the input data but only decreases the attack success rate.

In general, it is a fundamental problem that neural
networks are vulnerable to adversarial perturbation. The
existing defend methods are only to some extent mitigating
the attack. Thus, dedicated in-depth research is expected in
this area.

3 SYSTEM OVERVIEW

In this section, we present the system architecture of
aCAPTCHA, which is shown in Fig Basically, it consists
of seven modules:

Image Preprocessing (IPP) Module. In this module,
we implement 10 widely used standard image preprocess-
ing techniques for CAPTCHA security analysis, including
9 filters: BLUR, DETAIL, EDGE ENHANCE, SMOOTH,
SMOOTH MORE, GaussianBlur, MinFilter, MedianFilter,
and ModeFilter, and one standard image binarization
method. Basically, all the preprocessing techniques can be
used to remove the noise in an image.



Text-based CAPTCHA Attack (TCA) Module. In this
module, we implement 5 text-based CAPTCHA attacks,
including two traditional machine learning based attacks
(SVM, KNN) and three state-of-the-art DNN-based at-
tacks (LeNet [12], MaxoutNet [13] and NetInNet [14]). In
aCAPTCHA, TCA has two main functions. First, it can
provide necessary model information for generating text-
based adversarial CAPTCHAs, i.e., for the following TCG
module. Second, it can also be employed to evaluate the
resilience of text-based CAPTCHAs against actual attacks.

Image-based CAPTCHA Attack (ICA) Module. Simi-
lar to TCA, we implement 4 state-of-the-art image-based
CAPTCHA attacks in this module (NetInNet [14], VGG
[15], GoogleNet [17] and ResNet [18]]). It is used to provide
necessary model information for generating image-based
adversarial CAPTCHAs and for evaluating the resilience of
image-based CAPTCHAs against actual attacks.

Text-based Adversarial CAPTCHA Generation (TCG)
Module. In this module, we first implement 4 state-of-the-
art adversarial example (image) generation algorithms to
serve as the baseline. Then, we analyze the limitations of
applying existing adversarial image generation techniques
to generate text-based adversarial CAPTCHAs. Finally, ac-
cording to our analysis, we propose 4 new text-based adver-
sarial CAPTCHA generation algorithms.

Image-based Adversarial CAPTCHA Generation (ICG)
Module. In this module, we first analyze the limitations of
existing adversarial image generation techniques for gen-
erating image-based adversarial CAPTCHAs. Then, we im-
plement 4 image-based adversarial CAPTCHA generation
algorithms by improving existing techniques.

CAPTCHA Security Evaluation (CSE) Module. Lever-
aging TCA and ICA, this module is used to evaluate
the resilience and robustness of text- and image-based
CAPTCHAs against state-of-the-art attacks.

CAPTCHA Usability Evaluation (CUE) Module. This
module is mainly used for evaluating the usability of text-
and image-based CAPTCHAs.

aCAPTCHA takes a fully modular design, and is
thus easily extendable. We can freely add emerging at-
tacks to TCA/ICA and/or add new proposed adversarial
CAPTCHA generation algorithms to TCG/ICG.

3.1 Datasets

In the remainder of this paper, for the text-based evaluation
scenario, we employ MNIST (Modified National Institute of
Standards and Technology database) [3]. MNIST is a large
database of 70,000 handwritten digit images and is widely
used by the research community as a benchmark to evaluate
text-based CAPTCHA's security and usability [8] [3].

For the image-based evaluation scenario, we employ
another image benchmark dataset ImageNet ILSVRC-2012
(refers to the dataset used for 2012 ImageNet Large Scale
Visual Recognition Challenge) [4] [5]. The employed Im-
ageNet ILSVRC-2012 contains 50,000 hand labeled pho-
tographs from 1000 categories with 50 photographs from
each Category

1. The used dataset here is a actually a subset of ImageNet ILSVRC-
2012, which is sufficient for our purpose.

4 TEXT-BASED ADVERSARIAL CAPTCHAS

With the design goals in mind and following our design
principle, we show the design of TCG step by step below.

4.1 Baselines

In fact, CAPTCHAs can be viewed as a special case of
images. Then, following the design principle and goals,
a straightforward idea is to generate text-based adversar-
ial CAPTCHAs using exiting adversarial image generation
techniques. Therefore, we implement 4 baseline adversarial
image generation algorithms in TCG. Before delving to the
details, we define some useful notations.

4.1.1 Notations

We first present necessary notations in the context of gen-
erating adversarial images. To be consistent with existing
research, we use the same notation system as that in [11].
We represent a neural network as a function F(z) = y,
where x € R"*" is the input image E] and y € R™ is
the corresponding output. Define F' to be the full neural
network including the softmax function and let Z(x) = z be
the output of all the layers except the softmax. According to
y, F', which can be viewed as a classifier, assigns x a class
label C'(z). Let C*(z) be the correct label of x.

As in [10] [11], we use L, norms to measure the
similarity of z,2’ € R™™. Then, L, = |jz — 2'||, =
(i Yy o — 2 |P)1/P. According to the definition, Lo
distance measures the Euclidean distance between = and
z'; Lo distance measures the number of coordinates i s.t.
r;j # ¥ ;;and Lo distance measures the maximum change
to any of the coordinates, i.e., ||z — 2'||cc = max{|z11 —

x/1,1‘> T |$n,n - x;z,n|}

4.1.2 Baseline Methods

Recently, to generate adversarial examples (adversarial im-
ages in our context) against neural networks, many attacks
have been proposed [40] [38]. For our purpose, those at-
tacks can serve as our adversarial CAPTCHA generation
methods. In TCG, we implement four state-of-the-art such
attacks as our baseline methods.

JSMA. In [10], Papernot et al. proposed the Jacobian-
based Saliency Map Attack (JSMA) to generate adversarial
images. JSMA is a greedy algorithm. Suppose [ is the target
class of image x. Then, to obtain 2’ such that 2’ # x and
C(z') =1, [SMA follows the following steps: (1) ' = z; (2)
based on the gradient VZ(2');, compute a saliency map in
which each value indicates the impact of the corresponding
pixel on the resulting classification; (3) according to the
saliency map, select the most important pixel for modifi-
cation to increase the likelihood of class [; and (4) repeat the
above two steps until C'(z’) = [ or more than a set threshold
of pixels have been modified.

Note that, JSMA is also capable for generating untar-
geted adversarial images. For that purpose, we only have
to: (1) let I = C(z) and change the goal as to find z’ such
that 2’ # x and C(2') # [; (2) select the pixel to mostly
decrease the likelihood of class ! for modification.

2. Note that, = is not necessary to be a square image. The setting here
is for simplicity.



Carlini-Wagner Attacks. Aiming at generating high
quality adversarial images, Carlini and Wagner in [11] intro-
duced three powerful attacks tailored to Ls, Lo, and Lo, re-
spectively. Basically, all those three attacks are optimization-
based and can be targeted or untargeted. Taking the untar-
geted Loy attack as an example, it can be formalized as the
optimization problem: minimize ||6|| + ¢ - F(x + §), such
that x + 0 € [0,1]", i.e., for image z, the attack seeks for
a perturbation ¢ that is small in length and can fool the
classifier I’ meanwhile. In the formalization, c is a hyperpa-
rameter that balances the two parts in the objective function.
The constraint implies that the generated adversarial image
should be valid.

4.2 Analysis of Baselines

As discussed before, intuitively, it seems like that existing
adversarial image generation algorithms, e.g., JSMA and
Carlini-Wagner attacks, can be applied to generate adver-
sarial CAPTCHAs directly. Following this intuition, we
conduct a preliminary evaluation as follows: (i) Leverag-
ing MNIST and standard CAPTCHA generation techniques
[2], randomly generate 10,000 CAPTCHAs of length 4, i.e,,
each CAPTCHA is composed of 4 characters from MNIST;
Denote these CAPTCHASs by set C. (i¢) Suppose LeNet from
TCA is the employed CAPTCHA attack. Then, use LeNet
(trained using 50,000 CAPTCHAs for 20,000 rounds and
with batch size 50) to attack the CAPTCHAs in C. The
Success Attack Rate (SAR), which is defined as the portion
of successfully recognized CAPTCHAs in C, is 95.87%; (ii1)
In terms of LeNet, generate the adversarial versions of the
CAPTCHAs in C using JSMA, Ly, Lo, and L, denoted by
Cy, Cq, Cy, and Co, respectively. (iv) Use LeNet and possible
preprocessing techniques from the IPP module to attack C,
Cs, Cp, and C. The corresponding SARs are shown in Table
where “—" implies does not apply the corresponding prepro-
cessing and B denotes the image binarization processing.

From Table |1} we observe that without applying image
preprocessing, the adversarial CAPTCHAs generated by all
the baseline algorithms can significantly reduce the SAR
of LeNet, e.g., Lo reduces the SAR of LeNet from 95.87%
to 0%. This implies that the idea of applying adversarial
CAPTCHAs to defend against modern attacks is promising.

However, unfortunately, without talking the usability,
the security of these adversarial CAPTCHAs can be signifi-
cantly affected by image preprocessing either. For instance,
when attacking C, the SAR of LeNet is raised from 0% to
28.24% after applying the SMOOTH filter and to 94.15%
after further applying image binarization, which is similar
to its performance on normal CAPTCHAs. This implies
that the perturbation in the adversarial CAPTCHAs can
be removed by image preprocessing, i.e., the perturbations
added by the baseline algorithms are not resilient/robust to
image preprocessing.

We analyze the reasons from two aspects. From
the perspective of breaking CAPTCHAs, text-based
CAPTCHAs are monotonous compared with the image-
based CAPTCHAs. Character shape is only useful infor-
mation in text-based CAPTCHAs. Other information, such
as character colors and background pictures, is useless.
Thus, adversaries can employ multiple kinds of techniques,
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e.g., filtering and image binarization, to remove noise and
irrelevant information. From the perturbation generation
perspective, theoretically, pre-processing such as filtering
and binarization can be bypassed with minor modification
of adversarial example generation algorithm, e.g., adding
another convolutional layer to the beginning of the neural
network with one output channel that performs similar fil-
tering [52]. However, such modification will hugely increase
the noise added in CAPTCHAs. If we only consider filtering
operation, the adversarial examples generated by minor
modification would not affect human recognition. While
we consider both filtering and binarization, the adversarial
examples generated by minor modification are unable to
recognize by human. Therefore, existing adversarial image
generation techniques cannot keep the balance between
usability and security for text-based CAPTCHAs.

4.3 Adversarial CAPTCHA Generation

In the previous subsection, we analyzed the limitations of
existing techniques for generating adversarial CAPTCHAs.
Aiming at generating more robust and usable text-based
adversarial CAPTCHAs, we in this subsection proposed
four new methods based on existing techniques.

Our design mainly follows two guidelines. First, ac-
cording to our analysis, the perturbations added in the
space domain are frail to image preprocessing. Therefore,
we consider to add perturbations in the frequency domain.
This is because space domain perturbation can be consid-
ered as local change of images while frequency domain
perturbation is a kind of global change to images, which
is more difficult to remove, i.e., frequency domain pertur-
bation is intuitively more resilient to image preprocessing.
Certainly, when conducting frequency domain perturbation,
we should be aware of the possible impact on the usability.
Second, when generating adversarial CAPTCHAs, instead
of trying to add human-imperceptible perturbations, we
focus on adding human-tolerable perturbations. This will give
us more freedom to design more secure and fast adversar-
ial CAPTCHA generation methods. Specifically, based on
JSMA, L, Lo, and L., we propose 4 text-based adversarial
CAPTCHA generation algorithms, denoted by ]SMAf , Lg ,
Lg ,and L7, respectively.

JSMA/. We show the design of JSMA/ in Algorithm
Basically, JSMA/ follows a similar procedure as the untar-
geted JSMA. We remark the differences as follows. First,
in Steps 3-4, we transform a CAPTCHA to the frequency
domain by Fast Fourier Transform (FFT) and then compute a
saliency map. This enables us to elaborately inject perturba-
tions to a CAPTCHA in the frequency domain as expected.

Second, after transforming a CAPTCHA into the fre-
quency domain, its high frequency part usually corresponds
to the margins of characters and other non-vital information,
while the low frequency part usually corresponds to the
fundamental shape information of characters. Furthermore,
as we indicated before, the changes made in the frequency
domain induce global changes to an image. Therefore, to
decrease possible impacts on the usability of a CAPTCHA,
we introduce a mask matrix ¢ in Algorithm [1} which has
the same size with z. ¢ has values of 1 in the high frequency
part while 0 in the low frequency part. Then, as shown in



TABLE 1
Performance of baseline algorithms vs LeNet. The original SAR of LeNet is 95.87%.

. JSMA Lo Lo Lo

Filter _ B _ B - B - B
— 0.00% 13.93% 0.00% 73.51% 0.00% 1.38% 0.00% 83.30%
BLUR 515% 827% 4.22% 20.84% 6.25% 19.27% 6.25% 22.52%
DETAIL 17.80% 11.76% 0.00% 78.28% 2.22% 4.22% 56.79% 83.30%
EDGE ENHANCE 9.05% 827% 0.00% 277% 9.89% 9.89% 26.21% 35.13%
SMOOTH 4336% 37.71% 0.00% 64.70% 24.31% 7.54% 28.24% 94.15%
SMOOTH MORE 37.71% 40.46% 0.00% 37.71% 20.84% 10.79% 19.27% 88.58%
GaussianBlur 49.70% 16.42% 0.35% 35.13% 28.24% 22.52% 22.52% 73.51%
MinFilter 0.15% 1.38% 0.05% 0.11% 0.02% 0.07% 0.06% 0.15%
MedianFilter 24.31% 68.99% 0.05% 35.13% 17.80% 12.81% 12.81% 68.99%
ModeFilter 20.84% 30.40% 0.00% 22.52% 30.40% 32.69% 0.05% 40.46%

Algorithm 1: JSMA/

Input : z original CAPTCHAs; C*(z) the label of z;
F a classifier; ¢ mask.

Output: =’ adversarial CAPTCHAs

' —x,l+— C*(x);

while F(2') ==l do

2’ FFT(2);

compute a saliency map S based on the gradient
VZ(LL'If)l,'

S+ S Xy

based on S, select the pixel, denoted by z'/[i][],
that mostly decreases the likelihood of /;

modify 2'7[i][j] and its neighbors to decrease the
likelihood of /;

x' < IFFT(2'f);

S

o

Steps 5-6, we filter the pixels in the low frequency part while
only considering to change the pixels in the high frequency
part.

Third, after selecting the candidate modified pixel, in-
stead of modifying one pixel each time as in JSMA, we
modify the candidate pixel and its neighbors as shown in
Step 7. This design is mainly based on the fact that close
pixels in the frequency domain exhibit the partial similarity
[58]], i.e., neighboring pixels in the frequency domain have
very similar property and features. Therefore, modifying
the candidate pixel and its neighbors would significantly
accelerate the adversarial CAPTCHA generation process
while not harmfully affect its quality (recall that, we are
targeting to use user-tolerable instead of as little as possible
perturbations).

Finally, we make an Inverse FFT (IFFT) for the
CAPTCHA in the frequency domain and transform it back
to the space domain as shown in Step 8.

L3, L, and L{_. Basically, L}, L{, and LL, follow the
similar procedures as that in Ly, Lo, and L, respectively,
except that all the designs are finished in the frequency do-
main. The differences are the same as that between JSMA/
and JSMA. Therefore, we omit their algorithm descriptions
here while implementing them in TCG.

4.4 Evaluation

Now, we evaluate the security performance of JSMA/, Lg,
Lg ,and L/ and leave their usability evaluation in Section
[/} Generally, the evaluation procedure is the same as that
in Section In all the evaluations of this subsection, we
employ MNIST to randomly generate CAPTCHAs of length
4. For each attack in TCA, we use 50,000 normal CAPTCHAs
for training. Specifically, for the DNN based attacks LeNet,
MaxOut, and NetInNet, the batch size is 50 and each model
is trained for 20,000 rounds. For each scenario, we use 1000
CAPTCHAs for testing. When generating an adversarial
CAPTCHA, we set the inner 8 x 8 area as the high frequency
part while the rest as the low frequency part for mask ¢.
Each evaluation is repeated three times and their average is
reported as the final result.

First, we evaluate the performance of JSMA/, Lg, L{;,
and L/ without any image preprocessing. To conduct this
group of evaluations, we (¢) leverage ]SMAf , Ll , L'g , and
LY, to generate adversarial CAPTCHAs in terms of LeNet,
MaxoutNet, and NetInNet, respectively; and (i7) leverage
the attacks in the TCA module to attack these adversarial
CAPTCHAs, respectively. The results are shown in Table
where Normal indicates the SAR of each attack on the normal
CAPTCHAs (non-adversarial versions).

From Table we have the following observations. (1) All
the attacks in TCA are very powerful when attacking normal
CAPTCHAs. However, when they attack the adversarial
CAPTCHAs generated by JSMA/, L3, L{, or LI, , none of
them can break any adversarial CAPTCHA. This result is as
expected and further demonstrates the advantage of apply-
ing adversarial CAPTCHAs to improve the security. (2) The
generated CAPTCHAs by JSMA/, Lg , Lg , and L{_ have
very good transferability, i.e., the adversarial CAPTCHAs
generated in terms of one neural network model are trans-
ferable to another neural network or traditional machine
learning models. This demonstrates the good robustness of
the adversarial CAPTCHAs generated by JSMA/, Lg , Lg; ,
and L{_.

Now, we go further by fully considering both image
filtering and image binarization, Common operations in
breaking text-based CAPTCHAs. Full results are shown in
Table 3] from which we have the following observations. (1)
For SVM and KNN, they cannot break any CAPTCHAs gen-
erated by JSMA/, Lg , L{; , or LI even after image prepro-
cessing. This implies adversarial CAPTCHAs can achieve
very good security when against traditional machine learn-



TABLE 2
Performance of JSSMA/, L], L, and L, (no image preprocessing).

Text-based Adversarial CAPTCHA Generation

Attack Model Normal LeNet MaxoutNet NetInNet
isMAS  Lf Ll Ll [ismMal L] L] Ll ismal L] L] Ll

SVM 87.51% 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%

KNN 83.81% 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%

LeNet 95.87% 0.01% 0.00% 0.00% 0.00% | 0.00% 0.01% 0.00% 0.00% | 0.01% 0.00% 0.00% 0.00%
MaxoutNet 9529% 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
NetInNet 96.45% 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%

TABLE 3 i
Performance of JSSMAf, L{, L}, and L, (Filter + B).
Text-based Adversarial CAPTCHA Generation
Attack Model Filter + B LeNet MaxoutNet NetInNet
JSMAT L] L] LL, [1sMal L] L] L, [;IsMal L] Ly LL
BLUR 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
DETAIL 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
Z EDGE ENHANCE 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
§ SMOOTH 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
N SMOOTH MORE 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
E GaussianBlur 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
» MinFilter 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
MedianFilter 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
ModeFilter 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
BLUR 0.32% 0.29% 0.26% 0.24% | 0.30% 0.49% 0.30% 0.28% | 0.38% 0.25% 0.35% 0.29%
DETAIL 3.77% 048% 198% 1.84% | 2.71% 4.01% 2.86% 2.77% | 3.32% 2.24% 347% 2.95%
EDGE ENHANCE 3.77% 048% 1.98% 1.84% | 271% 4.01% 2.86% 2.77% | 3.32% 2.24% 347% 2.95%
k] SMOOTH 11.66% 3.50% 6.19% 6.56% | 849% 10.89% 7.20% 7.47% |10.70% 8.12% 8.65% 7.97%
% SMOOTH MORE  8.89% 271% 5.10% 4.81% | 6.94% 9.13% 5.68% 5.85% | 849% 649% 681% 6.56%
~ GaussianBlur 0.03% 0.05% 0.04% 0.04% | 0.04% 0.07% 0.05% 0.04% | 0.05% 0.06% 0.05% 0.04%
MinFilter 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
MedianFilter 0.01% 0.00% 0.01% 0.01% | 0.01% 0.02% 0.01% 0.02% | 0.02% 0.02% 0.01% 0.01%
ModeFilter 0.01% 0.00% 0.01% 0.01% | 0.01% 0.02% 0.01% 0.02% | 0.02% 0.02% 0.01% 0.01%
BLUR 5.85% 5.68% 4.67% 520% | 5.63% 3.89% 5.63% 5.15% | 5.96% 8.34% 5.46% 5.20%
DETAIL 10.70% 3.85% 7.61% 6.87% | 857% 881% 873% 857% |10.15% 6.25% 9.80% 9.21%
k] EDGE ENHANCE 10.70% 3.85% 7.61% 6.87% | 857% 881% 873% 857% |10.15% 6.25% 9.80% 9.21%
% SMOOTH 38.25% 28.66% 31.53% 29.96% |37.98% 34.88% 35.13% 34.88% |37.45% 35.13% 35.38% 34.88%
3 SMOOTH MORE 38.52% 27.83% 30.85% 30.85% |34.88% 32.69% 33.89% 34.38% |36.92% 31.53% 34.14% 33.89%
5 GaussianBlur 0.13% 047% 0.14% 0.16% | 0.16% 0.05% 0.12% 0.12% | 0.14% 0.31% 0.14% 0.14%
= MinFilter 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
MedianFilter 0.03% 0.00% 0.01% 0.01% | 0.02% 0.03% 0.02% 0.02% | 0.02% 0.04% 0.02% 0.02%
ModeFilter 0.03% 0.00% 0.01% 0.01% | 0.02% 0.03% 0.02% 0.02% | 0.02% 0.04% 0.02% 0.02%
BLUR 17.51% 13.47% 14.64% 15.77% | 17.10% 16.29% 16.55% 15.26% | 18.08% 17.10% 16.82% 16.03%
DETAIL 15.90% 7.34% 10.89% 10.42% | 13.47% 14.52% 13.03% 12.49% | 13.47% 10.24% 13.59% 13.03%
- EDGE ENHANCE 15.90% 7.34% 10.89% 10.42% | 13.47% 14.52% 13.03% 12.49% |13.47% 10.24% 13.59% 13.03%
Z SMOOTH 28.24% 16.82% 19.89% 20.20% |24.49% 24.87% 22.01% 21.84% |24.12% 21.67% 23.04% 22.18%
é SMOOTH MORE 28.88% 19.42% 21.84% 21.33% |24.87% 26.21% 23.40% 22.35% |24.87% 22.18% 23.58% 22.52%
2 GaussianBlur 048% 028% 0.27% 0.22% | 0.44% 043% 037% 0.35% | 045% 0.64% 039% 0.37%
MinFilter 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00% | 0.00% 0.00% 0.00% 0.00%
MedianFilter 0.06% 0.03% 0.03% 0.03% | 0.06% 0.07% 0.05% 0.05% | 0.06% 0.08% 0.05% 0.05%
ModeFilter 0.06% 0.03% 0.03% 0.03% | 0.06% 0.07% 0.05% 0.05% | 0.06% 0.08% 0.05% 0.05%

ing model based attacks. (2) For the DNN based attacks
LeNet, MaxoutNet, and NetInNet, they become more pow-
erful along with image filtering and binarization and can
break adversarial CAPTCHAs to some extent in several
scenarios. Still, adversarial CAPTCHAs are obviously more
secure than normal ones when considering the SAR rates
of these attacks. Further, comparing the results in Table
with that in Table [1} the adversarial CAPTCHAs generated
by JSMA/, Lg , Ll , and L{:0 are also much more secure than
the ones generated by JSMA, Lo, Ly, and L. (3) Similar
as the previous evaluations, the adversarial CAPTCHAs
maintain adequate transferability, which implies adversarial
CAPTCHAs have stable robustness.

Finally, we discuss why the frequency-based methods
perform better than space-based methods for text-based

CAPTCHAs. According to the CAPTCHASs we generated (as
shown in Fig. 2), after adding noise in the frequency domain,
the shape and edge of the character changes, which cannot
be recovered by filtering and binaryzation. Furthermore,
as we protect the low-frequency part of an image, the
fundamental shape of the characters in CHAPTCHAs will
not change. Thus, human can still recognize them easily.



TABLE 4
Security of image-based adversarial CAPTCHAs.

Image-based Adversarial CAPTCHA Generation

Normal NetInNet GoogleNet VGG ResNet50

JSMA" La" Lo" Loo' |[JSMA" La* Lo* Loo'|JSMA* L* Lo* Loo'|JSMA* L* Lo* Loo”

NetInNet 41.72% 0.0% 0.0% 0.0% 0.0% | 4.6% 20.3%4.2% 1.9%| 0.7% 5.4% 1.9%2.2%| 41% 3.3% 8.8% 4.7%

GoogleNet 51.69% 05% 3.8% 7.0% 14.3%| 0.0% 0.0% 0.0% 0.0%| 0.0% 0.1% 0.2% 1.5%| 0.4% 12% 6.3% 4.6%

VGG  5720% 05% 4.2% 11.5%13.5%| 0.8% 19.7% 6.4% 4.2%| 0.0% 0.0% 0.0% 0.0%| 0.5% 1.1% 13.0% 6.7%

ResNet50 63.80% 10.1% 17.6% 18.5% 20.8%| 1.9% 26.2%7.9% 7.6%| 0.1% 0.4% 1.2%3.1%| 0.0% 0.0% 0.0% 0.0%

TABLE 5
Security of image-based adversarial CAPTCHAs vs Filters.
Image-based Adversarial CAPTCHA Generation
Filter NetInNet GoogleNet VGG ResNet50

JSMA" La* Lo" Loo' |[JSMA' La* Lo' Loo' |[JSMA" La* Lo* Loo'|JSMA' La* Lo' Loo'
BLUR 0.0% 0.0% 00% 0.6%| 41% 9.7% 32% 25%| 1.7% 5.5% 1.6%2.0%| 44% 27% 53% 3.7%
DETAIL 0.0% 0.0% 00% 01%| 1.0% 16.7% 2.2% 0.8% | 04% 5.7%09%1.3%| 12% 13% 41% 2.8%
+ EDGEENHANCE 0.0% 0.0% 0.0% 0.0%| 0.0% 2.0% 0.0% 0.0% | 0.0% 0.0%0.0% 0.0%| 0.0% 0.0% 0.1% 0.0%
Z SMOOTH 0.0% 0.0% 0.0% 01%| 55% 19.2% 57% 3.9%| 1.1% 7.9%22%2.7%| 70% 55% 9.7% 85%
& SMOOTHMORE 0.0% 0.0% 0.0% 0.1%| 6.0% 19.1% 62% 4.9%| 15% 82%3.0%3.2%| 7.3% 57% 9.4% 7.6%
2 GaussianBlur 0.0% 0.0% 0.0% 01%| 55% 144% 59% 43%| 12% 6.7%32%3.4%| 73% 4.3% 88% 7.9%
MinFilter 0.0% 0.0% 0.0% 03%| 51% 12.3% 3.0% 55%| 2.1% 3.1% 1.2%4.4%| 58% 1.7% 5.5% 10.0%
MedianFilter 0.0% 0.0% 0.0% 01%| 51% 162% 6.5% 2.9% | 12% 7.9%3.5%2.3%| 55% 57% 94% 5.3%
ModeFilter 0.0% 0.0% 0.0% 01%| 4.6% 20.3% 42% 19%| 0.7% 54%19%2.2%| 41% 3.3% 8.8% 4.7%
BLUR 08% 57% 59% 82%| 0.0% 39% 1.3% 1.3%| 09% 4.3%28%2.9%| 68% 34% 62% 65%
DETAIL 04% 29% 5.1% 12.6%| 0.0% 0.0% 0.0% 0.0%| 0.0% 0.1%02%1.2%| 02% 0.5% 3.1% 3.0%
‘% EDGE ENHANCE 0.0% 05% 0.5% 1.6%| 0.0% 0.0% 0.0% 0.0%| 0.0% 0.0%0.1%0.1%| 0.1% 0.0% 0.2% 0.2%
Z SMOOTH 03% 27% 57% 7.8%| 0.0% 0.0% 0.0% 0.0%| 0.0% 0.8%0.7%1.5%| 09% 17% 7.9% 5.0%
w SMOOTHMORE 04% 38% 71% 91%| 0.0% 0.0% 0.0% 0.0%| 0.0% 0.8%0.8% 1.5%| 1.1% 1.2% 81% 5.7%
8  GaussianBlur 04% 23% 43% 62%| 0.0% 08% 0.0% 0.6%| 01% 21%21%2.0%| 1.9% 32% 9.1% 6.0%
© MinFilter 21% 38% 42% 10.8%| 0.0% 12% 02% 1.7%| 02% 1.1%0.7%3.4%| 1.7% 0.7% 53% 7.6%
MedianFilter 03% 19% 51% 53%| 0.0% 03% 0.0% 02%| 01% 1.8%1.6%1.0%| 1.7% 3.7% 7.3% 2.6%
ModeFilter 05% 38% 7.0% 14.3%| 0.0% 0.0% 0.0% 0.0%| 0.0% 0.1%0.2%1.5%| 04% 12% 6.3% 4.6%
BLUR 1.0% 49% 55% 7.6%| 3.7% 152% 85% 53%| 0.0% 0.0%0.0% 0.3%| 22% 3.4% 7.6% 6.7%
DETAIL 0.8% 4.2% 11.5%10.8%| 05% 18.1% 53% 2.0%| 0.0% 0.0% 0.0% 0.0%| 0.2% 0.7% 10.4% 3.1%
EDGE ENHANCE 0.0% 21% 27% 21%| 0.0% 34% 03% 0.1%| 0.0% 0.0%0.0% 0.0%| 0.0% 0.0% 0.9% 0.2%
) SMOOTH 07% 39% 9.2% 13.1%| 2.6% 21.3%11.8% 4.7% | 0.0% 0.0% 0.0% 0.0%| 1.2% 3.1% 13.9% 8.0%
O SMOOTHMORE 0.7% 3.7% 10.0% 12.3%| 2.0% 20.8% 11.5% 6.2% | 0.0% 0.0% 0.0% 0.0%| 12% 3.2% 13.5% 9.4%
GaussianBlur 11% 4.8% 7.6% 104%| 3.9% 21.8% 11.9% 53% | 0.0% 0.0% 0.0% 0.0%| 2.1% 3.4% 13.5% 7.5%
MinFilter 29% 3.0% 47% 88%| 45% 10.1% 3.2% 7.6% | 0.0% 0.0%0.0% 0.3%| 4.9% 1.6% 54% 12.3%
MedianFilter 05% 32% 82% 9.7%| 2.3% 19.7% 85% 3.2%| 0.0% 0.0% 0.0% 0.0%| 2.1% 4.0% 15.2% 6.0%
ModeFilter 05% 4.2% 11.5%13.5%| 0.8% 19.7% 64% 42%| 0.0% 0.0% 0.0% 0.0%| 0.5% 1.1% 13.0% 6.7%
BLUR 41% 17.6% 10.8% 14.6%| 6.2% 24.0%11.1% 6.7% | 09% 7.0%6.0% 4.4%| 0.1% 0.5% 2.6% 4.6%
DETAIL 10.8% 16.7% 15.6% 18.6%| 1.3% 22.3% 51% 4.1%| 02% 0.5% 1.1% 2.4%| 0.0% 0.0% 0.0% 0.0%
o EDGE ENHANCE 1.3% 58% 51% 49%| 01% 3.8% 03% 02%| 0.1% 0.1%0.5% 0.6%| 0.0% 0.0% 0.0% 0.0%
2 SMOOTH 62% 13.9%152%17.1%| 4.1% 33.1% 142% 7.3% | 0.0% 0.4% 1.0%3.1%| 0.0% 0.0% 0.0% 0.0%
Z SMOOTHMORE  7.0% 14.4%17.1% 19.6%| 4.3% 30.4%15.6% 7.8% | 0.1% 1.0% 1.2%3.0%| 0.0% 0.0% 0.0% 0.0%
& GaussianBlur 44% 16.7%12.3%15.6%| 8.2% 30.6% 13.5% 8.8% | 0.1% 3.8%2.9% 4.5%| 0.0% 0.0% 0.2% 1.0%
MinFilter 7.0% 9.3% 10.1% 16.9%| 10.8% 16.6% 7.0% 10.8%| 1.0% 2.1% 1.8% 4.6%| 0.1% 0.1% 2.1% 3.9%
MedianFilter 35% 9.0% 11.8% 13.5%| 7.6% 26.8% 13.9% 44% | 02% 2.0% 2.6%3.2%| 0.0% 0.0% 02% 1.1%
ModeFilter 10.1% 17.6% 18.5%20.8%| 1.9% 262% 7.9% 7.6%| 0.1% 0.4%1.2%3.1%| 0.0% 0.0% 0.0% 0.0%

5 IMAGE-BASED ADVERSARIAL CAPTCHAsS

5.1 ICG Design

For image-based adversarial CAPTCHA generation, we ac-
tually follow the same design principles as that for the text-
based scenario. Furthermore, similar to the situation that ex-
isting adversarial image generation techniques are not suit-
able for generating text-based adversarial CAPTCHAs, they
are not suitable for image-based adversarial CAPTCHAs
either due to similar reasons. Existing adversarial image
generation techniques are mainly targeting to attack neural
network models by adding as less as possible (human-
imperceptible) perturbations to an image. However, we
are standing on the defensive side to generate adversarial
CAPTCHAs to improve the security. This implies that we
might inject as much as possible perturbations to an image-

based adversarial CAPTCHA as long as it is user-tolerable
(user recognizable). In addition, the adversarial example
generation speed may not be a concern for existing tech-
niques. Although it is not a main constraint for CAPTCHA
generation neither, since we can generate the CAPTCHAs
offline, we still expect to generate many CAPTCHAs in a
fast way (since we may need to update our CAPTCHAs
periodically to improve the system security). Therefore, we
take efficiency as a consideration in adversarial CAPTCHA
generation.

Image-based CAPTCHAs are also different from text-
based ones. They carry much richer semantic information
which enables researchers to develop more processing tech-
niques. Therefore, we do not have to transform an image-
based CAPTCHA to the frequency domain. To some ex-
tent, it is relatively easier to generate image-based adver-



Algorithm 2: JSMA’

Input : 2 original CAPTCHAs; C*(z) the label of «;
F' a classifier; K noise level.
Output: 2’ adversarial CAPTCHAs

12" a1+ C*(x);

2 while F'(z') ==l or K > 0do

3 compute a saliency map S based on the gradient
VZ(;U');;

4 | based on S, select the pixel, denoted by z'[i][j],
that mostly decreases the likelihood of [;

5 | modify 2'[i][j] and its neighbors to decrease the
likelihood of [;

6 K ——;

sarial CAPTCHAs than generating text-based adversarial
CAPTCHAs. Here, similar to the text-based scenario, we
implement four image-based adversarial CAPTCHA gen-
eration methods based on JSMA, Ly, Lg, and L., denoted
by JSMA?, L§, LY, and L:_, respectively.

JSMA!. We show the design of JSMA® in Algorithm
which basically follows the same procedure as JSMA.
Following our design principle, we make two changes. First,
we introduce an integer parameter K to control the least
perturbation that should be made. This implies that in our
design, we try to inject as much as possible perturbations
as long as the CAPTCHA is user tolerable (certainly, K
is an empirical value that can be decided based on some
preliminary usability testing). Second, like to the text-based
scenario, we modify multiple pixels simultaneously to ac-
celerate the generation process.

Ly, L, and L. For the designs of L}, L}, and L',
their procedures are the same as Lo, Lo, and L., except that
we choose a small step and less iterations to accelerate the
CAPTCHA generation process. This also implies that our
perturbation injection scheme may not be optimal compared
with the original Lo, Lo, and L. As we explained before,
we are not targeting to add as less perturbation as possible
like the original algorithms. Towards another direction, we
try to inject more perturbations in a fast way when the
CAPTCHA is user-tolerable.

5.2 Evaluation

Now, we evaluate the security performance of J[SMA?, L,
L, and L, while leaving their usability evaluation in
the next section. In the evaluation, we employ ImageNet
ILSVRC-2012 to generate all the needed CAPTCHAs. Mean-
while, we use the pretrained models (all trained using the
data in ImageNet ILSVRC-2012) of the attacks in ICA to ex-
amine the security performance of the generated adversarial
CAPTCHAs, i.e., using the attacks in ICA to recognize the
generated CAPTCHAs. These pretrained models have state-
of-the-art performance and are available at Caffe Model Zoo
[6]. For each evaluation scenario, we use 1000 CAPTCHASs
for testing. Each evaluation is repeated three times and their
average is reported as the final result.
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We first evaluate the security of the adversarial
CAPTCHAs generated by JSMA?, L}, L}, and L% in the
scenario of not considering any image preprocessing. The
results are shown in Table @] Normal implies the SAR of
each attack when against normal CAPTCHAs, and in the
rest of evaluation scenarios, we first generate adversarial
CAPTCHASs in terms of the neural network model of an
attack, e.g., VGG, and then using different attacks to attack
them. Further, the default setting is K = 50 for JSMA?, and
K = 100 for L}, Lf), and Léo (note that, in the original Lo,
Lo, and L, there is also a parameter to control the noise
level. We denote it by K for consistence in L}, L{, and L ).

From Table |4} we have the following observations. First,
for image-based CAPTCHAs, adversarial learning tech-
niques can significantly improve their security. This fur-
ther confirms our design principle: to set one’s own spear
against one’s own shield. Second, the generated adversarial
CAPTCHAs demonstrate adequate transferability, i.e., the
adversarial CAPTCHAs generated in terms of one neural
network model also exhibits good resilience to other attacks.
Thus, they are robust.

Under the same settings with Table 4] we examine the
security performance of JSMA®, L§, Ly, and LY against the
attacks in ICA plus image preprocessing. Note that, since all
the CAPTCHAs are color images, we do not consider image
binarization here. We show the results in Table |5, Basically,
same conclusions can be drawn from Table [ as that from
Table il In addition, we can find that image filtering has
little impact on the security of the adversarial CAPTCHAs
generated by JSMA?, Lé, Lg, or fo), ie., they are very
robust.

Now, we consider the impact of different perturbation
(noise) levels on the security of the generated adversarial
CAPTCHAs. Taking JSMA' as an example, we show partial
results in Table[6] from which we make the following obser-
vations. First, in most of the scenarios, when adding more
noise, better security can be achieved, which is consistent
with our intuition. However, according to the results, such
security improvement is slight in most of the cases. Second,
as before, the generated adversarial CAPTCHAs are resilient
and robust to various attacks.

6 ADAPTIVE SECURITY ANALYSIS

In Sections 4] and 5} we evaluate the security performance of
aCAPTCHA when attackers have no idea whether possible
defense has been implemented. In this section, we analyze
in depth the adaptive methods that could be applied against
aCAPTCHA.

6.1 Statement

In practical scenario, we assume the threat follows all of the
following models.
Knowledge of Adversarial Example Generation
and Defense: The attacker has full knowledge
of adversarial example generation and defense
schemes. They can get that information from the
research community and other means.
No Knowledge of CAPTCHA Generation: The
attacker can realize that the CAPTCHAs were up-
dated by adding adversarial noise, while they do
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TABLE 6
Security of image-based adversarial CAPTCHAs vs Noise level.

Image-based Adversarial CAPTCHA Generation

Filter NetInNet GoogleNet VGG ResNet50
20 30 40 50 [ 20 30 40 50 | 20 30 40 50 | 20 30 40 50

BLUR 00% 0.0% 0.0% 0.0%[1.6% 12% 1.1% 0.9 %[0.6 % 0.5% 04 % 03 %(2.7% 3.0% 24% 1.8%
DETAIL 0.0% 0.0% 0.0% 0.0%0.8% 0.3% 0.1% 0.1%(02% 0.1% 0.1% 0.1 %|0.9% 0.5% 0.2% 0.1%
+ EDGE ENHANCE 0.0 % 0.0 % 0.0 % 0.0 %(0.0 % 0.0 % 0.0% 0.0 %0.0 % 0.0 % 0.0 % 0.0 %|0.0 % 0.0 % 0.0 % 0.0 %
Z SMOOTH 0.0% 0.0% 0.0% 0.0%|27% 1.8% 12% 1.1%|03% 02% 02% 0.1%(3.6% 24 % 1.6 % 1.4%
& SMOOTHMORE 0.0% 0.0% 0.0% 0.0%(3.0% 22% 1.2% 1.2%|04% 03% 03% 02%|3.6% 2.7% 22% 1.8%
> GaussianBlur 0.0 % 0.0% 0.0% 0.0 %|1.8 % 1.6 % 1.4 % 0.9 %(03 % 0.3% 0.1 % 0.1 %|3.3% 3.0% 1.8% 1.8%
MinFilter 0.0% 00% 0.0% 0.0%2.0% 1.1% 1.2% 12%|03% 0.6% 04 % 0.3 %|2.0% 22% 20% 14 %
MedianFilter 0.0 % 0.0 % 0.0% 0.0 %|22% 1.8% 1.4% 12%|03% 04% 02% 01%|24% 1.8% 12% 11%
ModeFilter 0.0% 0.0% 0.0% 0.0%|1.8% 0.9 % 0.6 % 0.7%0.2% 0.1% 0.1 % 0.1%(2.4% 0.9 % 05% 0.5%
BLUR 02% 02% 0.1% 0.1%[0.0% 0.0% 0.0% 0.0%0.4% 0.1% 0.1% 0.1%(1.8% 2.0% 1.6 % 1.8%
DETAIL 02% 0.1% 0.0% 0.0%0.0% 0.0% 0.0% 0.0 %|0.0% 0.0% 0.0% 0.0%|0.2% 0.1 % 0.0 % 0.0 %
‘% EDGE ENHANCE 0.0 % 0.0 % 0.0 % 0.0 %{0.0 % 0.0 % 0.0 % 0.0 %{0.0 % 0.0 % 0.0 % 0.0 %{0.0 % 0.0 % 0.0 % 0.0 %
Z SMOOTH 0.1% 0.1% 0.1% 0.0%|0.0% 0.0% 0.0% 0.0 %|0.0% 0.0% 0.0% 0.0%0.5% 0.1 % 0.1% 0.1 %
B SMOOTHMORE 0.1% 0.1% 0.1% 0.1%|0.0% 0.0% 0.0% 0.0 %(0.0 % 0.0 % 0.0 % 0.0 %|0.5% 0.3 % 0.2% 0.1 %
8  GaussianBlur 0.0% 0.1% 0.0% 0.0%(0.0% 0.0% 0.0% 0.0%[0.0% 0.0% 0.0% 0.0%[0.9% 0.3% 02% 0.2 %
© MinFilter 0.4% 0.3% 02% 0.2%|0.0% 0.0% 0.0% 0.0%|0.1% 0.0% 0.0% 0.0%(1.8% 0.9 % 0.4% 02 %
MedianFilter ~ 0.1 % 0.1 % 0.1 % 0.0 %|0.0% 0.0 % 0.0 % 0.0 %(0.0 % 0.0 % 0.0 % 0.0 %{0.6 % 0.3 % 0.3 % 0.2 %
ModeFilter 02% 01% 0.1% 0.0%|0.0% 0.0% 0.0% 0.0%[0.0% 0.0% 0.0% 0.0%|0.2% 0.1% 0.1% 0.0%
BLUR 04% 02% 01% 0.1%[1.6% 1.1% 0.9 % 0.7 %|0.0% 0.0% 0.0% 0.0 %(0.8 % 0.6 % 0.6 % 0.5 %
DETAIL 01% 01% 0.1% 0.1%|0.3% 02% 0.1% 0.1%(0.0% 0.0% 0.0% 0.0%|0.2% 0.1% 0.0% 0.0 %
EDGE ENHANCE 0.0 % 0.0 % 0.0 % 0.0 % (0.0 % 0.0 % 0.0 % 0.0 % (0.0 % 0.0 % 0.0 % 0.0 %|0.0 % 0.0 % 0.0 % 0.0 %
= SMOOTH 03% 0.1% 0.1% 0.1%|0.9% 0.9 % 0.7% 0.6 %|0.0% 0.0% 0.0% 0.0%0.6 % 0.3 % 0.1% 0.1 %
8 SMOOTH MORE 0.2 % 0.1 % 0.1 % 0.0 %0.9% 0.9% 0.5% 0.5%|0.0% 0.0% 0.0% 0.0 %(0.3% 02 % 0.1% 0.1%
> GaussianBlur 03 % 0.1% 0.1% 01%|1.2% 1.4% 0.9 % 0.9 %|0.0% 0.0% 0.0% 0.0%|09% 0.5% 03 % 02%
MinFilter 1.6% 1.1% 09 % 0.7 %|1.6 % 1.4% 12% 1.1 %|0.0 % 0.0 % 0.0 % 0.0 %|1.8 % 0.9 % 0.8 % 0.5%
MedianFilter 0.3 % 0.1% 0.0% 0.0 %|1.1 % 0.8 % 0.8 % 0.6 %{0.0 % 0.0 % 0.0 % 0.0 %{0.9% 0.5% 0.3 % 0.3 %
ModeFilter 01% 01% 0.1% 0.0%0.4% 0.3% 0.1% 0.1%[0.0% 0.0% 0.0% 0.0%|0.3% 0.1% 0.1% 0.0%
BLUR 16% 14% 12% 1.1%(3.0% 24 % 2.0% 1.8 %(0.6 % 0.2% 0.2% 0.2%[0.0% 0.0% 0.0% 0.0 %
DETAIL 3.6 % 3.6 % 33 % 3.0%|0.6% 0.5% 0.3 % 0.3%|0.1% 0.0% 0.0% 0.0%0.0% 0.0% 0.0% 0.0 %
o EDGE ENHANCE 02 % 0.1 % 0.1 % 0.1 %(0.0% 0.0 % 0.0 % 0.0 %|0.0% 0.0 % 0.0 % 0.0 %{0.0 % 0.0 % 0.0 % 0.0 %
2 SMOOTH 16% 1.6% 12% 12%|1.8% 1.4% 1.4 % 0.9 %(0.0 % 0.0 % 0.0 % 0.0 %|0.0% 0.0 % 0.0 % 0.0 %
Z SMOOTHMORE 2.0% 1.2% 1.1% 1.1%|1.8% 1.8% 1.4% 1.2%0.0% 0.0 % 0.0% 0.0 %|0.0% 0.0 % 0.0 % 0.0 %
< GaussianBlur  1.2% 0.7 % 0.7 % 0.8 % (3.0 % 3.0 % 2.0% 1.8 %0.0 % 0.0 % 0.0 % 0.0 %|0.0 % 0.0 % 0.0 % 0.0 %
MinFilter 33% 2.2% 24 % 2.0%|5.9 % 43 % 3.6 % 3.0%|02% 0.3% 0.1 % 0.1%0.0% 0.0% 0.0 % 0.0 %
MedianFilter 0.9 % 0.8 % 0.7% 0.7 %|2.2 % 22 % 22 % 22 %|0.1% 0.1% 0.0% 0.0 %|0.0% 0.0 % 0.0 % 0.0 %
ModeFilter 24 % 22% 24 % 24%[08% 0.7% 0.6 % 0.3%(0.1% 0.0% 0.0% 0.0%0.0% 0.0% 0.0% 0.0%

not know the specific model and method used to
generate the adversarial CAPTCHAs.

No Access to the Source Images: The at-
tacker can only access to all generated adversarial
CAPTCHAs but not to their source. They has no
knowledge about the particular image used for
generating the adversarial CAPTCHAs.

From the aCAPTCHASs generation perspective, we do
not know which model the attacker uses. From the attacker
perspective, it is also reasonable to assume that they do not
know the specific method we use. In summary, it is black-
box attack versus black-box defense.

6.2 Adaptive Attack

When attackers are aware of the existence of the possible
defense, they will try other state-of-the-art methods against
adversarial CAPTCHAs. As we discussed in Section[2} there
are three types of defensive techniques against adversarial
examples: adversarial training, gradient masking and input
transformation. Attackers can adopt these techniques to im-
prove their attacks. We introduce one representative method
for each type of defense respectively below.

Ensemble Adversarial Training [45]: This method aug-
ments a model’s training data with adversarial examples

crafted on other static pre-trained models. As a result, min-
imizing the training loss implies increased the robustness
to black-box attacks from some set of models. In particular,
the model trained by this method won the first round of
the NIPS 2017 competition on Defenses against Adversarial
Attacks. We believe this method is one of the most powerful
choice against adversarial CAPTCHAs.

Defense Distillation [42]: This method is a type of gradi-
ent masking based defense technique. Defensive distillation
modifies the softmax function to include a temperature
constant 7™

evi /T

softmax(x,T); = W
First, training a teacher model on the training set, using
softmax at temperature 7. Then using the teacher model
to label each instance in the training set with soft labels
(the output vector from the teacher model), using softmax
at temperature 7. Finally, training the distilled model on
the soft labels from the teacher model, again using softmax
at temperature 7. Distillation can potentially increase the
accuracy on the test set as well as the robustness against
adversarial examples.

M

Thermometer Encoding [47]: Actually, image binaryza-
tion and filtering are representative instances of input trans-



TABLE 7
Performance of adversarial CAPTCHAs against adaptive attack.

Adaptive Methods Normal Adversarial
JSMAS L] Ly LL
— 95.87% | 0.00% 0.00% 0.00% 0.00%
EnAdv. Training 96.95% |28.40% 21.26% 25.84% 23.20%
EnAdv. Training™  97.12% |48.61% 41.37% 39.35% 41.37%
Distillation 94.36% | 5.35% 4.96% 6.77% 5.13%
Therm. Encoding ~ 92.39% |[12.19% 7.68% 9.89% 11.24%

formation [51]. In section ] we have demonstrated that
our text-based adversarial CAPTCHAs are resistant to them.
Thus, we consider a more effective method here. In contrast
to prior work which viewed adversarial examples as blind
spot in neural networks, Goodfellow et al. [26] argued
that the reason adversarial examples exist is that neural
networks behave in a largely linear manner. The purpose
of thermometer encoding is to break this linearity. Given an
image z, for each pixel color T(i,4,e)s the l-level thermometer
encoding 7(z;, j’c)) is a [-dimensional vector:

T((i4,e) = {

For example, for a 10-level thermometer encoding, we had
7(0.57) = 1111100000. Then we use thermometer encoding
to train a model.

1 if x(i,j,c) > ]ﬂ/l,
0 otherwise.

2

6.3 Evaluation

Generally, the evaluation procedure is the same as that in
Section In all the evaluations of this subsection, we
employ MNIST to randomly generate CAPTCHAs of length
4. For each scenario, we use 1000 CAPTCHAs for testing.
When generating an adversarial CAPTCHA, we set the
inner 8 x 8 area as the low frequency part while the rest
as the high frequency part for mask ¢. Each evaluation is
repeated three times and their average is reported as the
final result.

Specifically, we use MaxoutNet to generate adversarial
CAPTCHAs. For ensemble adversarial training, we use
MaxoutNet, NetInNet and LeNet to generate adversarial
examples by JSMA/, L£ , Lg and L/, respectively, and use
these examples to train a LeNet model. In Table [7] EnAdo.
Training means we do not use adversarial examples crafted
on MaxoutNet, while EnAdv. Training* do. For defense dis-
tillation, we set 7" as 100 which is the strong defense setting.
For Thermometer Encoding, we set [ as 16 which is the same
as the original paper. In addition, image binaryzation is used
in all of the tests.

The results are shown in Table [7} from which we make
the following observations. First, defense distillation which
is based on gradient masking is not suitable to black-box
defense. The result is consistent with our analysis that gra-
dient masking is not an effective solution against black-box
attacks. Second, thermometer encoding shows limited value
to recognize adversarial examples. This may be due to the
large perturbation we injected. Third, ensemble adversarial
training largely improves the SAR, especially in the EnAdv.
Training™ setting. However, in practice, attackers are hard
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to know what methods and models used in adversarial
CAPTCHAs generation, which restricts the practical effect
of ensemble adversarial training. Overall, the generated ad-
versarial CAPTCHAs are resilient to state-of-the-art defense
methods.

6.4 Discussion

Now, we would like to discuss why the results in this
paper are better than previous work (the attacks based on
the transferability of adversarial examples did not perform
well). First, we stand on the defense side, and follow the
rule to inject as much perturbation as possible when the
adversarial CAPTCHASs remain human-tolerable. Large per-
turbation magnitudes usually cause stronger defense effect.
Second, the recognition of CAPTCHAs is carried out by
multiple recognition tasks simultaneously. When the suc-
cess rate of a single recognition task decreases, the overall
success rate will decrease exponentially. For example, when
the successful recognition rate of a single character is 50%,
the expected successful recognition rate of the text-based
CAPTCHAs of length four is 6.25%, and the expected
successful recognition rate of the text-based CAPTCHAs of
length six is only 1.5%.

Then we consider why the improved attacks based
on state-of-the-art techniques is limited. We inject larger
perturbation into CAPTCHAs, and input transformation,
such as image rescaling and bit-depth reduction can only
eliminate part of the perturbation. As a result, the remaining
perturbation is still effective to downgrade the recogni-
tion model. Further, in this paper, we generate adversarial
CAPTCHAs against the local model trained by ourselves,
instead of attacking the target model directly. There is no
widely accepted conclusion about the phenomenon that
an adversarial example generated by one model is often
misclassified by other models. The existing adversarial
example defense strategies cannot perform well against
transfer attacks, e.g., gradient masking based methods. Ad-
versarial training, especially ensemble adversarial training,
is regarded as the most effective defense strategy against
black-box attacks. However, it requires the attacker to guess
the methods and collect enough source images that are
used in adversarial CAPTCHAs generation, which implies
a large potential cost. Overall, existing adversarial example
defense techniques are difficult, if not impossible, to break
our adversarial CAPTCHAs.

In this section, we do not conduct further evaluation
for image-based adversarial CAPTCHAs. This is due to
that training models on ImageNet require lots of com-
putation resources. Furthermore, we believe that image-
based adversarial CAPTCHAs are more secure than text-
based adversarial CAPTCHAs. On the one hand, image-
based CAPTCHAs contain rich and important information
which plays a key role in image classification. Thus, at-
tackers cannot use radical image preprocessing, such as
image binarization, and this increases the dimensionality
of the space of adversarial examples. On the other hand,
many state-of-the-art adversarial example detection tech-
niques fail to or are hard to deploy on large-scale datasets,
e.g., ImageNet. This enhances the security of image-based
adversarial CAPTCHAs indirectly.



Image Adversarial CAPTCHA Test

mninst_adversarial_4

please input the content of picture on the bottom

(b) Image-based Adversarial CAPTCHAs

Fig. 2. Examples of aCAPTCHA. Text-based CAPTCHA is generated by
JSMA/ and image-based one is generated by JSMA? using K=50.

7 USABILITY EVALUATION

We have examined the security performance of aCAPTCHA
from multiple perspectives in Sections and [f] respec-
tively. In this section, we conduct experiments to evaluate
the usability performance of aCAPTCHA. As in the security
evaluation, we employ MNIST and ImageNet ILSVRC-2012
to generate normal and adversarial CAPTCHAs for the text-
and image-based scenarios, respectively.

7.1 Settings and Methodology

To evaluate the usability of aCAPTCHA, we set the base-
line as the usability of normal text- and image-based
CAPTCHAs.

Methodology. To conduct our evaluation, we construct
a real world website [60]], on which the evaluation webpage
is self-adapted to both PC and mobile clients, to deploy nor-
mal and adversarial CAPTCHAs and collect the evaluation
data. Then, we recruit volunteer users to do the evaluation.
For each user, she/he will be asked to finish the evaluation
in six steps.

Step 1: providing some general statistical information, in-
cluding gender, age range, and education level.

Step 2: finishing 10 tasks of recognizing randomly generated
text-based normal CAPTCHASs, including 5 CAPTCHAs of
length 4 and 5 CAPTCHAS of length 6.

Step 3: finishing 10 tasks of recognizing randomly generated
text-based adversarial CAPTCHAs, including 5 CAPTCHAs
of length 4 and 5 CAPTCHAs of length 6. To simplify
our evaluation, we here employ JSMA/ to generate the
adversarial CAPTCHAs.

Step 4: finishing 5 tasks of recognizing randomly generated
image-based normal CAPTCHAs. For each recognition task,
we first randomly select two images belong to the same
category from ILSVRC-2012, and set one as the source image
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TABLE 8
User statistics.
ender female male
& i3 32

e [16-20] [21-30]  [31-40] [41-50] [51-60]

& 76 0 T 3 5
. primary school high school B.S. M.S. PhD.

education I 7 g5 Vi 10

and the other one as the target image. Then, we randomly
select nine images from ILSVRC-2012 that are with different
categories of the target image, and mix the target image with
the nine images to form a candidate set. Finally, given the
source image, we ask a user to recognize the target image
from the candidate set.

Step 5: finishing 25 tasks of recognizing randomly generated
image-based adversarial CAPTCHAs at five difficulty levels, with
each difficulty level has 5 tasks. For each task in this step,
its procedure is the same as the task in Step 4 except for the
images used here are the adversarial versions. For simplic-
ity, we employ JSMA? (in terms of NetInNet) to generate the
adversarial versions for the source image and the images in
the candidate set. As shown in Section[5, we can control the
noise level of JSMA? using K. Hence, in this step, we set up
five difficulty levels with K = 10, 20, 30, 40, 50, respectively.
For each difficulty level, each user is asked to do 5 tasks.

Step 6: providing some feedbacks of the evaluation. After fin-
ishing the previous five steps, we will show the user her/his
evaluation result, including how many tasks she/he failed,
which task she/he failed, etc. Then, we ask feedbacks from
the users by asking some questions, e.g., which CAPTCHA is
more difficult to recognize?

For each task in Steps 2 and 3, if all the characters in a
CAPTCHA are correctly recognized, we define that the task
has been successfully finished. For each task in Steps 4 and
5, if a user can correctly select the target image, we define
that the task has been successfully finished. After a user
finished all the six steps, the results will be transferred to the
website server. The visualization of adversarial CAPTCHAs
used in test are shown in Figure

Ethical Discussion. In our usability evaluation, human
subjects are involved. Therefore, we consulted with the IRB
office for potential ethical issues. Since we strictly limit our-
selves to only collect necessary information and no Personal
Identifiable Information (PII) is collected, our evaluation
was approved by IRB.

7.2 Results and Analysis

After moving the usability evaluation website online, we
finally recruit 125 volunteer users as shown in Table
Specifically, the users include 43 females and 82 males, and
most of them have ages ranging from 16 to 30. Furthermore,
almost all the users’ education levels are high school or
higher. Following the evaluation procedure, all the 125 users
successfully finished the evaluation (~ 90% users finish the
evaluation through smart phones). We then collect all the
results to our server.

Based on the collected data, we show the main results
in Table [0} where . denotes the length of a text-based
CAPTCHA, K indicates the noise (difficulty) level of an
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TABLE 9
Usability of aCAPTCHA.

Text-based CAPTCHAs Image-based CAPTCHAs
Normal Adversarial Normal Adversarial
t=4 1=6|t=4 =6 K=10 K=20 K=30 K=40 K =50
Success rate  92.8% 87.2% [88.0% 82.2% | 80.0% | 79.2% 81.6% 80.0% 80.8% 80.4%
Average time 8.6s 9.7s | 8.6s 10.2s | 19.7s 15.3s 12.3s 12.8s 11.8s 11.5s
Median time 7.1s 7.8s 6.2s 8.4s 16.0s 10.9s 9.4s 9.4s 8.8s 9.4s

image-based adversarial CAPTCHA, and success rate, aver-
age time, and median time measure the average successful
probability, the average time consumption, and the median
time consumption of all the users to finish the correspond-
ing task, respectively. From Table 9] we have the following
observations.

For text-based CAPTCHAs, although the adversarial
versions can significantly improve the security performance
as shown in Section [4] their success rate of recognition also
maintains a high level, which is only slightly lower than
that of the normal versions. Meanwhile, it takes similar time
for users to recognize normal and adversarial CAPTCHAs.
These results suggest that text-based adversarial and normal
CAPTCHAs have similar usability. In addition, given that
long CAPTCHASs usually have better security than short
ones [7], we also find that long text-based CAPTCHASs cost
more time for recognition and have a lower success rate
than that of the short ones (consistent with our intuition).
This implies that there is a tradeoff between security and
usability.

For image-based CAPTCHAs, the advantage of adver-
sarial versions is more evident. Adversarial CAPTCHAs
have similar or even better success rates as the normal
ones in all the cases. The success rates of adversarial
CAPTCHAs with different noise (difficulty) levels are also
similar. This suggests that image-based CAPTCHAs are
more robust to adversarial perturbations. Given the obvious
security advantage shown in Section [f} image-based adver-
sarial CAPTCHAS is more promising compared to normal
ones. Another interesting observation is that adversarial
CAPTCHAs cost less time for recognition than the normal
versions, which is a little bit out of our expectation. We
conjecture the reasons as follows: (7) deliberately adversarial
perturbation has little impact on the quality of images with
respect to human recognition; and (i¢) as the evaluation goes
on, users become more and more familiar with the tasks.
Thus, they can finish the tasks faster.

Now, we give a close look at the success rate of different
users based on their statistical categories. The results are
shown in Fig[3] From Fig[l] we can see that, in most of
the scenarios, users from different statistical categories ex-
hibit similar success rate over both adversarial and normal
CAPTCHAs. This further demonstrates the generality of
aCAPTCHA.

In summary, according to our evaluation, the
CAPTCHAs generated by aCAPTCHA, especially the
image-based adversarial CAPTCHAs, have similar usability
as the normal versions. Recall the security evaluation of
aCAPTCHA in Sections [4] and 5} they together demonstrate
that aCAPTCHA is promising in addressing the dilemma of
existing text- and image-based CAPTCHAs.

Accuracy

EY
70
60
a0
30
20
10

0

Text-based Text-based
(Normal) (adversarial)

Image-based Image-based
(normal) (adversarial)

mfemale ® male

(a) Success rate VS Gender

%0

&0
7
&
s0
a0
0
20
10

0

Text-based Text-based
(Normal)  (adversarial)

Accuracy

Image-based Image-based
(normal)  (adversarial)

W Age:16-20 m Age:21-30 Age:30+

(b) Success rate VS Age

100
%

EY
70
60
50
0
30
20
10

0

Text-based Text-based
(Normal) (adversarial)

Accuracy

Image-based Image-based
(normal) (adversarial)

® Primary shcool and High shcool m B.S. M.S. Ph.D.

(c) Success rate VS Education

Fig. 3. Success rate VS Statistical category.

7.3 Further Analysis

Following the evaluation procedure, we ask some feedbacks
of users after finishing the CAPTCHA recognition tasks. The
first question is that which CAPTCHA is the most difficult one
for recognition? The results are shown in Fig[d]

e From Fig@ (a), in the text-based context, we can find
that 67% users think that adversarial and normal
CAPTCHAs have similar difficulty, 19% users think
that adversarial CAPTCHAs are more difficult for
recognition, and interestingly, there are also 14%
users think that the normal versions are more dif-
ficult. This indicates that adversarial CAPTCHAs do
not increase the recognition difficulty obviously from
the view of users.

o From Fig[] (b), in the image-based context, we can
find that the users that think adversarial and normal
CAPTCHAs have similar difficulty take the largest
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(a) Text-based CAPTCHASs

= Similar difficulty

= Normal version

Adversarial version

Adversarial version-1
Adversarial version-2
Adversarial version-3

= Adversarial version-4

'/11%
= Normal version
.
14%

= Adversarial version-5
= Similar difficulty

(b) Image-based CAPTCHAs

Fig. 4. Difficulty of normal and adversarial CAPTCHAs.

= Wrongly recognize indicated image
= Can not find similar image
Can find several similar image
Mistake

= Other reasons

Fig. 5. Reasons of failure recognition.

portion, saying 39%, while the other six options
are varied from 5% to 17%. Still, no adversarial
CAPTCHAs are obviously difficult than the normal
versions. This again indicates that image-based ad-
versarial and normal CAPTCHAs have similar diffi-
culty.

In Step 6 of the evaluation, if a user has one or more
failures in Steps 2-5, we will show her/him the failed tasks
and ask a question “what is the most possible reason for this
failure?” for each failed task. We also provide five choices
for this question: incorrectly recognize the source image, can not
find the target image, find more than one target images, mistakes,
and other reasons. After analyzing the collected data, we
find that 24% users successfully finished all the CAPTCHA
recognition tasks without any failure. For the rest of the
users, their feedbacks are shown in Fig

From Fig| we can find that most of the failures are
caused by either cannot recognize the source image or
cannot recognize the target image. We conjecture the main
reason is that some of the randomly selected images from
ILSVRC-2012 might be semantically improper, which are
difficult to understand their semantical meanings and fur-
ther distinguish them. Furthermore, most of the users finish
the evaluation on their smart phones. The relatively small
screens may harm the recognizability of images.
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8 DiscussIiON

Remarks on aCAPTCHA. Different from traditional
CAPTCHA designs, which are mainly focusing on de-
fending against attacks in a passive manner, we design
aCAPTCHA following a more proactive principle: fo set one’s
own spear against one’s own shield. Then, in terms of the model
of state-of-the-art CAPTCHA attacks, we designed and im-
plemented text- and image-based adversarial CAPTCHAs.

When implementing adversarial CAPTCHAs, we also
follow a different methodology from that of existing adver-
sarial image generation techniques. The main reason, as we
discussed before, is because we stand on a different position.
Existing adversarial image generation techniques focus on
attacks in a hidden manner. For instance, some method
may focus on generating an adversarial image which is
only different from the original image in one pixel (it
is impossible for humans to identify such difference). In
contrast, we follow the rule to inject as much perturbation as
possible when the adversarial CAPTCHASs remain human-
tolerable. By this way, we would find a better balance
between CAPTCHA security and usability, which can be
demonstrated by our evaluation results.

One thing deserves further emphasis is that: atCAPTCHA
is not designed as a replacement while is designed as an enhance-
ment of existing CAPTCHA systems. According to our design,
aCAPTCHA can be seamlessly combined with the deployed
text- and image-based CAPTCHA systems. The only change
is to update the normal CAPTCHAs with their adversarial
versions. Therefore, we believe aCAPTCHA has a great
applicability. Actually, we have contacted with several Inter-
net companies to introduce aCAPTCHA. They are all very
interested with aCAPTCHA and two of them have shown
the intension to integrate aCAPTCHA to their systems.

Finally, we believe open source is an important way
to promote computer science research, especially in the
CAPTCHA defense domain. Therefore, we make the
aCAPTCHA system publicly available at [60], including
the source code, trained models, datasets, as well as the
usability evaluation interfaces.

Limitations and Future Work. As an attempt to design
adversarial CAPTCHAs, we believe aCAPTCHA can be
improved in many perspectives. We discuss the limitations
of this work along with future work below.

First, in the design of aCAPTCHA, we only integrate
the popular attacks to text- and image-based CAPTCHAs.
Also, following our design principle, we propose and im-
plement four text-based and four image-based adversarial
CAPTCHA generation methods, respectively. Note that, all
these designs and implementations are for demonstrating
the advantages of adversarial CAPTCHAs. Furthermore,
aCAPTCHA employs a modular design style, which is
easy for new technique integration. Hence, we will add
more attacks as well as more adversarial CAPTCHA gen-
eration methods to aCAPTCHA, especially the emerging
techniques. We believe the open source nature will facilitate
the improvement process of aCAPTCHA.

Second, as we discussed, adversarial CAPTCHAs expect
human-tolerable instead of human-imperceptible pertur-
bations. However, in our evaluation, we set the human-
tolerable perturbation based on our experience and prelim-
inary evaluation in our experiments, i.e., we do not have



a standard to quantify human-tolerable perturbation yet.
Therefore, it is expected to conduct more dedicated research
in understanding and quantifying the tradeoff between
CAPTCHA security and usability.

Third, in the paper, we do not consider that CAPTCHAs
were being outsourced to human labor. By design,
CAPTCHAs are simple and easy to solve by humans while
hard to solve by automated bot. This quality has made
them easy to outsource to the global unskilled labor market.
This type of attack is hard to prevent. The function of
CAPTCHAs is only to distinguish between the machine and
the human. We should to design complementary system to
against human labor attack. This task is another interesting
future research topic.

9 RELATED WORK
9.1 Traditional CATPCHAs

Text-based CAPTCHAs. The robustness of text-based
CAPTCHAs is always an active research field. In [23]], Chel-
lapilla and Simard studied the security of early text-based
CAPTCHAs and proposed an effective machine learning
based attack to break them. In [7]], Bursztein et al. conducted
a systematic study on the security of text-based CAPTCHAs
with anti-segmentation techniques. In [22], Yan and Ahmad
found that the Crowding Characters Together (CCT) mecha-
nism could improve the security of CAPTCHAs. However,
such kind of security mechanisms are broken soon by a
group of attacks that leverage better machine learning tech-
niques [21] [20]. Recently, Gao et al. demonstrated another
simple yet powerful machine learning based attack that can
break a wide range of text-based CAPTCHAs. In a word,
text-based CAPTCHA attacks continuously emerging while the
defense research is far from enough.

Image-based CAPTCHAs. As another popular topic,
image-based CAPTCHASs also draw a lot of attention [28]
[27] [29]. In [25], Chew and Tygar proposed three image-
based CAPTCHA schemes, which are still in wide use now.
On the other hand, in [53], Golle developed a machine
learning based attack against the Asirra CAPTCHA. More-
over, in [30], Zhu et al. systematically studied the design
of image-based CAPTCHAs and showed an attack to break
12 existing CAPTCHA schemes. Following another track,
Sivakorn et al. designed a novel attack that leverages online
image annotation services and libraries [31]]. Similar to the
text-based CAPTCHA scenario, more defensive research is also
expected to secure image-based CAPTCHAs.

Other CAPTCHAs. There are also many other forms of
CAPTCHAS, such as audio-based CAPTCHAs [37], video-
based CAPTCHAs [34], game-based CAPTCHAs [36], etc.
However, those CAPTCHAs are not widely employed in
practice mainly because of the usability issue. Furthermore,
there also exist plenty of attacks that can break them [33]]
[35] [54].

9.2 Emerging CAPTCHAs

DeepCAPTCHA. In [59], Osadchy et al. introduced a
new image-based CAPTCHA scheme which is designed
to resist machine learning attacks. It adds Immutable Ad-
versarial Noise (IAN) to the correctly classified images that
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deceive deep learning tools and cannot be removed using
image filtering. However, DeepCAPTCHA is different from
our approach. In general, DeepCAPTCHA is a new type
of image-based CAPTCHA scheme which could provide
high security. While our aCAPTCHA system is designed
to enhance the existing CAPTHCA schemes. Furthermore,
the proposed IAN, which is resistance to filtering attack,
cannot be used in text-based CAPTCHA generation. In this
work, we consider more state-of-the-art adversarial example
defense strategies and propose several new methods to
generate text- or image- based adversarial CAPTCHAs.
reCAPTCHA. The reCAPTCHA service offered by Google
is the most widely used CAPTCHA service. It is a new
multi-stage CAPTCHA system [31]. At the first round of
check-authentication, Google leverages information about
user’s activities to correlate requests to users that have
previously interacted with any of its services. If the user
is deemed legitimate, he is not required to solve a challenge.
Otherwise, the user needs to further solves the given text-
or image- based CAPTCHA correctly. reCAPTCHA and
aCATPCHA do not conflict. aCAPTCHA can be used for
further improving reCAPTCHA's security.

9.3 Defense Methods against Adversarial Examples

The robustness of machine learning models against adver-
sarial examples is an active research filed recently. In [39],
Szegedy et al. found that adversarial training increases the
robustness of a model by augmenting training data with
adversarial examples. In [46], Madry et al. showed that
adversarially trained models can be more robust against
white-box attacks if the perturbation during training closely
maximizes the model’s loss. In [45] , Tramer et al. propsed
ensemble adversarial training, a technique that augments
training data with perturbation transferred from other mod-
els. It can somehow make a model resist to black-box
attacks.

Another way to defend against adversarial perturbation
is input transformation. Without of changing the model
structure, it tries to eliminate the perturbation in the input.
Xu et al. [51]] proposed feature squeezing, reducing the color
bit depth and spatial smoothing. These simple strategies
are inexpensive and can sever as complementary to other
defenses. In [48], Guo et al. ensembled various input trans-
formations to counter adversarial images. However, these
methods are not strong when against white-box attacks,
and can be broken by minor modifications [49]. Moreover,
Athalye et al. [49] described that gradient masking is an
incomplete defense to adversarial examples. Many state-
of-the-art gradient masking schemes can be successfully
circumvented by their attacks.

10 CONCLUSION

In this paper, we study the generation of adversarial
CAPTCHAs. First, we propose a framework for generat-
ing text- and image-based adversarial CAPTCHAs. Then,
we design and implement aCAPTCHA, a comprehen-
sive adversarial CAPTCHA generation and evaluation sys-
tem, which integrates 10 image preprocessing techniques,
9 CAPTCHA attacks, 4 baseline adversarial CAPTCHA



generation methods, and 8 new adversarial CAPTCHA
generation methods, and can be used for the genera-
tion, security evaluation, and usability evaluation of ad-
versarial CAPTCHAs. To evaluate the performance of
aCAPTCHA, we conduct extensive experiments. The results
demonstrate that the adversarial CAPTCHAs generated by
aCAPTCHA can significantly improve the security of nor-
mal CAPTCHAs while maintaining similar usability. Finally,
we open source aCAPTCHA to facilitate the CAPTCHA
security research.
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