
Unveiling Security Vulnerabilities in Git Large File Storage Protocol

Yuan Chen†∗, Qinying Wang†∗, Yong Yang†, Yuanchao Chen‡, Yuwei Li‡, Shouling Ji†(�)

†Zhejiang University ‡National University of Defense Technology,
E-mails: {chenyuan, wangqinying, yangyong2022}@zju.edu.cn, {chenyuanchao, liyuwei}@nudt.edu.cn, sji@zju.edu.cn

Abstract—As an extension to the Git version control system that
optimizes the handling of large files and binary content, Git
Large File Storage (LFS) has been widely adopted by nearly all
Git platforms. While Git LFS offers significant improvements
in managing large files, it introduces new security implications
that remain largely unexplored. This paper presents the first
comprehensive security analysis of Git LFS, identifying 11
critical security properties that LFS servers must uphold.
Building on our analysis of these property violations, we
propose four new attack vectors: Private LFS File Leak-
age, LFS File Replacement, Quota-based Denial of Service
(DoS), and Quota Escape. These attacks exploit weaknesses
in practical LFS server implementations and can lead to se-
rious consequences, including unauthorized access to sensitive
files, malware injection, denial of service affecting all public
repositories, and resource abuse. To evaluate the security of
LFS implementations, we develop a semi-automated black-box
testing tool and apply it to 14 major Git platforms. We uncover
36 previously unknown vulnerabilities and have responsibly
disclosed them to the respective platform maintainers, receiving
positive feedback and over $1800 in bug bounty rewards.

1. Introduction

Git Large File Storage (LFS) [1] is an extension to the
Git version control system specifically designed to optimize
the management of large files and binary content, such as
images, videos, and AI model files. Traditional Git work-
flows struggle with these large files primarily because Git
stores complete file histories, and binary files cannot be
efficiently diffed or compressed [2], [3]. Git LFS tackles
this problem by replacing large files in the repository with
lightweight pointer files and uploading actual files to the
LFS server. This approach significantly reduces the reposi-
tory size, improves performance, and ensures that large file
content is only retrieved when necessary. Nowadays, Git
LFS is widely adopted across most Git hosting platforms,
from mainstream services like GitHub [4] to lightweight
solutions like Gogs [5]. Even AI-focused platforms, such as
Hugging Face [6], rely on Git LFS to store and distribute
large datasets and model files efficiently.

However, the introduction of Git LFS expands the sys-
tem’s attack surface through the addition of the LFS server
component. This new component necessitates robust access
∗The authors contributed equally to this work.
Shouling Ji is the corresponding author.

control mechanisms to prevent unauthorized file uploads and
protect private user files from being leaked. For instance,
CVE-2019-6786 [7] highlights a GitLab vulnerability that
allowed attackers to steal private LFS files. More alarmingly,
inadequately implemented LFS servers can be susceptible
to file overwrite attacks, which compromise data integrity
and could lead to severe supply-chain attacks. Such at-
tacks enable indirect compromise of organizations through
trusted third-party dependencies. This risk is particularly
pronounced in the realm of AI, where large datasets and
model files are commonly stored using LFS. Without proper
permission checks and content verification, attackers can
covertly embed backdoors into model files, facilitating a
range of trojaning and poisoning attacks [8], [9], [10].
Additionally, weaknesses in quota mechanisms may allow
adversaries to bypass storage restrictions or conduct denial-
of-service (DoS) attacks by exhausting victims’ storage quo-
tas. This can severely disrupt their service usage. Moreover,
the financial impact of quota bypasses could be substantial.
For instance, an attacker uploading 10TB of data could
potentially misappropriate storage worth $12,288 annually
on GitHub or $115,302 on TencentCloud [11] without being
charged.

To the best of our knowledge, no comprehensive security
analysis of Git LFS has been conducted, with prior work
limited to documented CVEs targeting LFS client [12], [13],
[14] and GitLab server [7], [15], [16], [17] vulnerabilities,
discovered through ad-hoc efforts. The broader security
implications of LFS implementations across different Git
providers remain largely unexplored and face three key
challenges:
Challenge 1: Protocol Complexity. In contrast to tradi-
tional Git’s simple client-server architecture, Git LFS in-
troduces additional layers of complexity by incorporating
multiple components, including the client, Git SSH server,
LFS server, and storage server. This complexity hampers
comprehensive security assessments by expanding the attack
surface and increasing the difficulty of analyzing vulnera-
bilities across the system.
Challenge 2: Compositional Intricacy. The interplay be-
tween Git LFS and auxiliary features, such as repository
archiving and forking, introduces subtle and often over-
looked security risks. For instance, when a repository is
archived (marked as read-only), LFS may still allow new
uploads without updating the quota usage, potentially en-
abling a quota escape attack. These nuanced interactions
highlight the need for rigorous investigation into possible

exploitation vectors within this complex system.
Challenge 3: Infrastructure Heterogeneity. The varied
implementation approaches, including cloud storage integra-
tion, verification API call enforcements, and quota enforce-
ment, significantly impede systematic vulnerability detection
across different platforms.

To address Challenge 1, we adopt a feature-based,
property-driven approach to systematically formalize Git
LFS security analysis. We thoroughly examine the protocol’s
interactions and complexities across diverse infrastructures.
Through this comprehensive analysis, we distill 11 criti-
cal security properties that LFS servers must uphold, with
special attention to functional compositions and identifying
new attack surfaces, thereby resolving Challenge 2. We then
propose four new attack vectors that may arise if these
security properties are violated:

• Private LFS File Leakage: This attack allows an adver-
sary to download sensitive files from private repositories,
compromising user confidentiality.

• LFS File Replacement: Without proper content verifi-
cation, an attacker can replace uploaded files and, even
more severe, cross-user files, thereby bypassing malware
scans and executing supply-chain attacks, which poses
a particular risk in AI model sharing contexts.

• Quota-based DoS Attack: This attack targets public
repositories by consuming their LFS quota, rendering
the service unusable to legitimate users.

• Quota Escape: This attack permits an attacker to upload
and download large amounts of data without incurring
associated costs, leading to severe resource abuse.

In addition to identifying these attacks in the wild,
we develop a semi-automated tool that employs a black-
box testing approach to detect vulnerabilities in LFS server
implementations. In response to Challenge 3, we design our
tool with a modular architecture that adapts to the distinct
LFS features of each platform, ensuring thorough security
assessments across diverse environments. Utilizing our tool,
we systematically evaluate the security of 14 major Git plat-
forms and have uncovered 36 previously unknown vulnera-
bilities. The evaluation results highlight the effectiveness of
the proposed security properties and underscore the critical
need for robust access control, file integrity verification,
and systematic quota management. All vulnerabilities were
responsibly disclosed to the respective platform maintainers,
who have acknowledged the issues and provided positive
feedback. In recognition of our efforts, we also received
bug bounty rewards totaling over $1800.

The key contributions are summarized as follows.

• We conduct the first comprehensive security analysis
of Git LFS servers, establishing 11 essential security
properties that platforms should adhere to. Based on
these security properties, we propose four novel attacks,
including LFS File Leakage, LFS File Replacement,
Quota-based DoS Attack, and Quota Escape.

• We develop a semi-automated testing framework to fa-
cilitate vulnerability detection in Git LFS, designed to be

modular and extensible. We release it to facilitate future
research at https://github.com/NESA-Lab/LFSonar.

• Through systematic analysis, we have identified 36 pre-
viously unknown vulnerabilities—including private file
leakages, malware scanning bypasses, and various quota
escape weaknesses—across the 14 Git platforms. Our
findings have been validated through responsible disclo-
sure to the affected platforms.

2. Background
2.1. LFS Protocol

This section provides an overview of the LFS protocol
interactions. When a user has installed Git LFS extension
by git lfs install, and marked a file as tracked by
LFS using git lfs track filename, the LFS client
will be triggered during git push and git pull/git
clone operations. The client interacts with the LFS server
to upload or download the relevant large files. As illustrated
in Figure 1, we outline the steps involved in uploading an
LFS object according to the LFS protocol.

Step 1: Authentication via SSH to Obtain an Au-
thorization Token. In a typical LFS setup, LFS clients get
an authentication token by connecting to the SSH server
and executing git-lfs-authenticate. This command allows the
server to generate a token, enabling secure HTTP-based
interactions for LFS operations. Example:
$ ssh git@github.com git-lfs-authenticate

user/repo.git upload↪→

{ "href":
"https://github.com/user/repo.git/info/lfs",↪→

"header": {
"Authorization": "Bearer <token>"

},
"expires_in": 3600}

Alternatively, if the SSH server lacks LFS
support or the Git platform only uses the HTTP
protocol, users can authenticate by providing their
username and password (or access token) via Basic
Authentication. In this case, the Authorization
header used subsequently will follow the format:
Basic base64encode(username:password).

Step 2: Batch API Interaction for Getting Actions.
With the authorization token in hand, the client proceeds to
interact with the LFS server’s Batch API. The API allows
clients to request actions for multiple files in a single HTTP
request, optimizing network efficiency and reducing latency.
For file uploads, the client sends a POST request to the
Batch API endpoint with a JSON payload listing the objects
(oid and size) to be uploaded:
POST /user/repo.git/info/lfs/objects/batch
Authorization: Bearer <token>
Content-Type: application/vnd.git-lfs+json
Accept: application/vnd.git-lfs+json

{ "operation": "upload",
"objects": [{

"oid": "<object ID (file SHA-256)>",
"size": <file size in bytes>

},...] }

https://github.com/NESA-Lab/LFSonar

Figure 1: LFS protocol interactions for uploading a file.

The LFS server processes the request and returns action
details for each object, typically including an upload
action that specifies the upload URL along with the required
headers for the LFS client. In certain LFS server implemen-
tations, a verify action is also provided, which the LFS
client should call upon completion of the file upload. If
the object already exists on the repository, no actions are
returned. For download requests, the actions field in the
response provides the download link and necessary headers,
assuming the file exists and passes permission checks.

{ "transfer": "basic",
"objects": [{
"oid": "<object ID>",
"size": <file size>,
"actions": {
"upload": {
"href": "https://<upload url>",
"header": {
"Authorization": "<upload-token>",
... <more headers>

}},"verify": {
"href": "https://<verify api url>",
"header": {
"Authorization": "<verify-token>"

}}}}, ... <more objects>]}

For example, GitHub LFS Batch API returns an AWS S3
[18] URL as the upload href. Besides, the response also
includes headers like Authorization (AWS4-HMAC-
SHA256 Signature), x-amz-content-sha256 and
x-amz-date. These headers ensure that AWS S3 verifies
the uploaded content against the requested SHA-256 hash.
Additionally, GitHub returns the verify href in the format
https://lfs.github.com/<user>/<repo>/ob
jects/<sha256>/verify, with an Authorization
header in the format RemoteAuth gitauth-v1-xxx,
a custom authentication mechanism by GitHub.

Step 3: Uploading the Actual File Content via PUT.
Utilizing the information (href and headers) from the
Batch API response, the client uploads the file content to
the specified storage server. The client performs an HTTP
PUT request to the upload URL:

PUT https://<upload url>
Authorization: <upload-token>
Content-Length: <file size>
Content-Type: application/octet-stream
... <more headers>

<file content>

Upon a successful upload, the storage server responds
with an HTTP 200 OK status, indicating that the file has
been received and stored.

Step 4: Verification via the Verify API Call (Op-
tional). To ensure the integrity and completeness of the
uploaded files, the LFS protocol includes an optional ver-
ification step. Our empirical study shows that this step is
commonly implemented by Git platforms using cloud-based
storage to notify the LFS server once the file has been
uploaded to the cloud. If the verify action is present in
the Batch API response, the client will send a POST request
to the verify API (href value in the verify action) after
uploading the file, which contains the oid and size. The
LFS server is responsible for confirming the existence and
integrity of the uploaded file and will return an HTTP 200
OK status upon successful verification. If the verification
fails like size mismatch, the server will return an error
response, prompting the client to retry the upload.

LFS Pointer File Format. After successfully uploading
the LFS object to the LFS server, the LFS client generates
a pointer file containing metadata about the actual file. This
pointer file is committed to the Git tree and subsequently
pushed to the Git server. The pointer file is in the following
plain text format:

version https://git-lfs.github.com/spec/v1
oid sha256:<SHA-256 hash of the actual file>
size <file size in bytes>

2.2. Git Platforms

Based on the functionality and open-source availability,
Git platforms can be categorized into four types: Git-centric
Platforms, Self-hosted Git Providers, Cloud Services, and
AI Platforms.
• Git-centric Platforms (e.g., GitHub) focus exclusively

on providing Git services.
• Self-hosted Git Providers (e.g., GitLab) offer open-

source solutions that organizations can deploy on their
own infrastructure.

• Cloud Services (e.g., Aliyun Codeup) integrate Git
functionality into broader DevOps platforms tailored for
enterprise needs.

• AI Platforms (e.g., Hugging Face) leverage Git LFS for
storing and sharing AI models and datasets.
All Git platforms support hosting LFS files in Git repos-

itories, though features and quotas vary1. Git-centric plat-

1. For instance, GitHub provides 1GB free storage with a 50GB upgrade
option for $5 monthly [19], while TencentCloud Coding charges $563
annually for an additional 50GB LFS space along with extra computational
resources [11].

forms, for instance, often emphasize open source collabora-
tion and therefore are more likely to support direct LFS file
downloads from web pages. In contrast, Cloud services such
as Aliyun Codeup do not support hosting public repositories.
Similarly, AI platforms often lack support for the usage
queries, deploy keys, and fork functionality.

This paper focuses on features pertaining to LFS ca-
pabilities, permission checking, file integrity, and quota
accounting. Below, we provide a brief overview of these
relevant features.
• Public Repository: allows users to designate a reposi-

tory as public, thereby granting read-only permission to
anonymous users.

• Fork Public Repository: enables users to fork reposito-
ries with shared Git histories, often used in open-source
collaboration.

• LFS Usage Query: allows monitoring of current LFS
storage usage.

• LFS File Management: enables viewing and deletion
of LFS objects to manage storage effectively, as LFS
protocol does not natively support file deletion [20].

• LFS SSH Support: allows users to use LFS with an
SSH remote URL seamlessly, avoiding the need to input
an account password for LFS authentication.

• Deploy Key: adds an SSH key for read-only repository
access, commonly used in CI/CD scenarios.

• Archive Repository: enables users to mark a repository
as read-only, thereby preventing further modifications.

• Cloud Storage Direct Upload: utilizes cloud services
as the storage server, returning a pre-signed upload link
in the Batch API call (Step 2 of the LFS protocol).

• Predictable LFS Endpoint: allows clients to infer the
upload/download URL that would be returned by the
Batch API. While this does not inherently constitute a
security vulnerability, it may enable extra attack vectors.

2.3. Motivating Example

CVE-2019-6786 [7] is a vulnerability with a CVSS
score of 6.5 affecting GitLab Community and Enterprise
Editions prior to versions 11.5.8, 11.6.6, and 11.7.1. Due
to incorrect access control, it allows unauthorized users
to access a Git LFS object’s content if they know the
file’s oid (SHA-256 hash) and size. According to the is-
sue page [21], an attacker can exploit this vulnerabil-
ity by uploading an empty file without a Content-Type
header in Step 3 of the LFS protocol, bypassing the
need for the actual file content. Since the affected version
of GitLab relies on the Content-Type header set to
application/octet-stream to identify client LFS
API requests, the attacker is able to bypass the LFS handling
mechanism, including permission checks and file hash val-
idation. Consequently, the request triggers the internal API
endpoint PUT Projects::LfsStorageController
#upload_finalize, which verifies the existence of the
LFS object in global shared storage based on its oid and
size, and then creates a database record linking the LFS

object to the attacker’s repository, ultimately granting the
attacker access to the sensitive file content.

This vulnerability exposes how seemingly minor imple-
mentation flaws can lead to significant security breaches.
The intricate interactions among various components (client,
Git SSH server, LFS server, and storage server) further
complicate authentication and access control. Moreover,
given the widespread adoption of Git platforms with diverse
configurations, including cloud infrastructure integration,
it is highly probable that similar vulnerabilities exist in
other implementations, and that other components, such as
quota management, may harbor distinct types of bugs. This
motivates us to propose a rigorous security analysis and
bug detection framework tailored to LFS implementations,
aimed at uncovering latent flaws that could compromise
access control mechanisms or other critical components.

3. LFS Security Analysis

In this paper, we focus on issues related to LFS servers
in their implementation of the Git LFS protocol, while vul-
nerabilities in LFS clients or low-level binary issues (such
as buffer overflows) are beyond the scope of our analysis. In
this section, we present a systematic analysis of the LFS pro-
tocol structured around three fundamental dimensions of file
storage security: confidentiality, integrity, and availability.
These dimensions guide the identification of three critical
aspects of the LFS protocol: access control (Section 3.1), file
integrity (Section 3.2), and quota management (Section 3.3),
each of which directly contributes to achieving these security
goals. Access control ensures that only authorized users can
store and retrieve files, thereby preserving confidentiality.
File integrity guarantees that files stored on the LFS server
correspond to their respective Git commits, ensuring data
integrity. Quota management enforces limitations on storage
usage, protecting server availability by preventing potential
abuse.

To rigorously evaluate these aspects, we formulate a
series of targeted questions based on widely accepted se-
curity principles and informed by vulnerabilities observed
in similar protocols. We then conduct a thorough analysis
of these questions, systematically examining each one to
identify potential security issues and vulnerabilities. Based
on this analysis, we formalize our findings into clearly de-
fined Security Properties (SPs), to encapsulate key security
requirements for a robust LFS server implementation.

3.1. Access Control

Who should be able to read a private LFS object?
In a public repository, it is evident that all users can access
LFS objects within that repository. However, in a private
repository, access control must be strictly enforced, treating
all files as confidential. Therefore, only the owner and
collaborators with granted permissions to access the Git
repository should be able to read the private LFS objects.

Users of the current repository should not be able to
access LFS objects that are stored in other repositories. Even

if the same object is already on the storage server, the upload
process (Step 3 of the protocol) must still enforce strict
file content verification2. As demonstrated by CVE-2019-
6786, bypassing the upload step or using weak verification
logic can allow attackers to exfiltrate sensitive LFS files
by uploading empty content, leading to breaches of file
confidentiality and user privacy.

In light of the above discussion, we propose the follow-
ing two SPs:

SP1: Only users with read access to the Git repository
should be authorized to download LFS objects that
have been uploaded to the same repository.
SP2: File content must be verified during uploads
before any LFS object is made accessible for reading,
regardless of whether an identical LFS object already
exists in other repositories.

Who can upload an LFS object to the repository? Up-
loading an LFS object can be considered as a write operation
to the corresponding Git repository. If another user, whether
logged in as a non-collaborator or as an anonymous user,
is able to upload a new LFS file, the uploaded LFS object
would consume the victim’s LFS quota, leading to abuse and
potential denial-of-service (DoS) attacks. Therefore, only
authorized users with write access to the repository, authen-
ticated with appropriate credentials such as the owner’s SSH
key or Basic Authentication (username/password), should be
permitted to upload LFS objects. Furthermore, if coupled
with file integrity violations, such unauthorized uploads
could result in the overwriting of existing files, exacerbating
the security risks and potentially leading to a supply-chain
attack.

In addition to users, deploy keys may also have access to
the repository. It is crucial to ensure that a deploy key with
only read access cannot perform uploads. If this restriction
is violated and the deploy key is compromised (e.g., through
a third-party CI/CD platform breach), an attacker could ex-
ploit the unintended write permissions, escalating the threat
from mere code leakage to a supply chain attack. This risk is
particularly severe when users of the vulnerable Git platform
rely on the assumed read-only nature of the deploy key.

Based on the preceding analysis, we formulate the fol-
lowing two SPs:

SP3: Only users with write access to the Git repository
should be authorized to upload LFS objects.
SP4: A deploy key with only read access should not
be able to upload LFS objects.

3.2. File Integrity

Can the file contents be maliciously tampered with?
The SHA-256 hash serves as an immutable identifier shared

2. To optimize performance, the file upload process may be safely
skipped if and only if: (a) the LFS object exists in at least one public
repository, or (b) the current user has read access to at least one private
repository that contains the object.

between the Git repository and the LFS server, so it’s re-
quired that the LFS server maintain the corresponding stored
file unchanged to preserve data integrity. If an attacker can
upload or overwrite an existing LFS file with altered content,
this would trigger an error during subsequent download
attempts by the Git LFS client. As the client checks whether
the content of the downloaded object matches its corre-
sponding object identifier (the file’s SHA-256 hash), any
mismatch would result in an exception, effectively blocking
the execution of commands such as git clone or git
pull, leading to a DoS attack.

Furthermore, victim users may unknowingly download
the tampered file through the web interface, which often
lacks content verification mechanisms, creating a significant
risk of supply-chain attacks as replaced files with stealthy
injected backdoors would not trigger any alert. Such a threat
is particularly concerning in AI scenarios, where model
files are commonly stored using LFS and are frequently
downloaded via the web interface or API rather than through
Git commands. If overwrite attacks are possible due to
insufficient permission checks and content verification, at-
tackers could stealthily inject backdoors into model files and
datasets, posing severe security risks such as trojaning and
poisoning attacks [8], [9], [10]. Notably, we have confirmed
that the latest version (v0.26.2) of the Huggingface Hub
Python SDK [22] does not verify the SHA-256 hash of
downloaded LFS files, exacerbating this threat.

As demonstrated by the prior discussion, we propose the
following SP:

SP5: Uploaded LFS objects must be verified to ensure
their content matches the claimed SHA-256 hash, to
prevent the upload of tampered files.

3.3. Quota Management

When should quota usage be increased? Quota us-
age should remain unchanged in the case of a download
request, as this action is merely a read operation. However,
if the LFS server is improperly implemented, it might allow
the downloading an LFS object that exists globally but is
unknown to the current public repository, which would also
violate SP1. Under such circumstances, the server might
automatically generate records that link the object to the
repository, thereby consuming the repository’s quota. This
flawed design, where download requests can increase quota
usage, enables potential DoS attacks against all public repos-
itories, threatening platform-wide availability.

For upload requests, ideally, the usage should be up-
dated immediately upon successful completion of the file
upload. Nevertheless, implementing such a mechanism can
be challenging, particularly for Git platforms employing
object storage services (e.g., AWS S3) as the storage server
(as shown in Figure 2). In these cases, the uploaded file is
directly transferred to the storage server without notifying
the LFS server to update the quota usage. To address this
challenge, the LFS protocol includes an optional verify API

Figure 2: Delay attack against quota mechanism.

call (Step 4), requiring the client to send a POST request
to the LFS server after completing the PUT request. If the
LFS server relies on this verification step to increase the
quota usage, but still permits the downloading of objects that
bypassed this verification step, abuse becomes possible. An
adversary could easily modify the LFS client to omit the
verification step, thus bypassing the quota limitation and
uploading an unlimited number of files. Such a flaw could
result in substantial quota abuse, thereby affecting both the
stability and reliability of the platform.

Upon further reflection, even if LFS objects are restricted
from being downloaded without invoking the verify API,
the risk of abuse persists if uploaded objects are stored
without an expiration mechanism and the verify step can
be delayed. This security gap stems from the exclusion of
pending objects from quota calculations. As illustrated in
Figure 2, an attacker can first upload a large number of files
without invoking the verify API. Once the attacker needs
to download the files after an extended period, they can
finalize the upload by invoking the verify API (Step 4).
This step remains valid because pending files are not subject
to garbage collection and will temporarily increase quota
usage. The attacker can then obtain a download URL via
the Batch API (Step 5). After downloading, by deleting files
(Step 6) to reclaim quota and repeating the upload process
(Steps 1–3), the attacker can effectively bypass quota limits.
While this requires some effort, continuous deletion and
re-uploading allow the attacker to make additional files
downloadable. It is important to note that the “pending"
state is only conceptual since the LFS server is unaware
of the files until the verify API is called. This vulnerability
is particularly relevant in cold data backup scenarios, where
large volumes of data are stored long-term with infrequent
access.

Given the discussion above, we outline the following
three SPs:

SP6: Download requests must not increase quota us-
age.
SP7: Files excluded from quota management should
not be downloadable.
SP8: Pending objects should be freed regularly.

How much should quota usage be increased? Quota
management should accurately track the size of the uploaded
file, rather than relying on the size parameter provided by
a malicious client. Similar to cloud storage services (e.g.,
Dropbox), any manipulation of the file size parameter can
pose a significant risk to the provider, as it can enable abuse
attacks. Therefore, in addition to verifying the file content
against its claimed SHA-256 (SP5), the actual size of the
uploaded file must also be verified against the provided size
parameter at all stages.

We summarize the above discussion into the following
SP:

SP9: Quota usage should increase by the exact size
of the uploaded file, and requests with incorrect size
parameters must be rejected.

To whom should quota usage be attributed? While
it may seem logical to attribute quota usage to the repos-
itory where a file is uploaded, this becomes complex with
forked repositories. GitHub’s policy, as documented in [19],
attributes both bandwidth and storage usage from fork repos-
itories to the root repository of the network. This design
choice leaves public repositories vulnerable to both resource
abuse and DoS attacks through their forks. We are currently
discussing this issue with GitHub to address the underlying
design flaw.

The above discussion leads to the following SP:

SP10: Quota usage of uploaded files should be at-
tributed to the current repository.

When should quota usage be decreased? There are
two primary methods to delete LFS objects: managing
them via the web interface or deleting the entire repository.
However, decreasing quota does not necessarily imply that
the file is no longer accessible, leaving the potential for
abuse. For instance, many Git platforms do not delete LFS
objects when a repository is removed, likely to provide an
option for recovery within a specific timeframe. If these
files remain accessible, such as being downloadable from a
newly recreated repository with the same name, it could lead
to a quota limitation bypass, as these files would no longer
count toward the user’s quota but would still be available
for download.

The preceding analysis results in the following SP:

SP11: Quota usage should only be decreased after LFS
objects are properly deleted.

To summarize this section, we present a systematic
security analysis of the LFS protocol across confidential-
ity, integrity, and availability dimensions, examined through
access control, file integrity, and quota management. The
analysis yields 11 Security Properties: access control prop-
erties (SP1-4) governing read and write permissions, file
integrity property (SP5) mandating content verification, and
quota management properties (SP6-11) preventing resource

abuse. These properties collectively establish essential se-
curity requirements for robust LFS server implementations.

4. Threat Model and New Attacks
In this section, we outline our threat model and introduce

four novel attacks targeting Git LFS servers. These attack
vectors exploit various vulnerabilities in the LFS mecha-
nism, which have not been addressed in prior research.

4.1. Adversarial Capabilities
We assume the adversary has the following capabilities:

• Create accounts and repositories on the Git platform.
• Upload files to his own repositories.
• Read and fork public repositories, but cannot access

private repositories belonging to the targeted entity.
• Possess knowledge of the file metadata (SHA-256 hash

and size) of the target sensitive files.
The first three capabilities reflect the standard privileges

available to any user of a Git platform that supports public
registration. The fourth capability, while more advanced, is
still plausible in several real-world scenarios. For instance,
a user may inadvertently leak a downloaded archive of a Git
repository that contains LFS object pointers, which include
the SHA-256 hash and file size of the files. Another realistic
scenario involves a company deleting a public repository,
possibly for compliance reasons. In such cases, users who
previously cloned the repository might attempt to exploit
LFS vulnerabilities to retrieve the LFS objects from the
deleted repository, which should now be treated as private.
Additionally, adversaries might infer or obtain file metadata
through man-in-the-middle attacks or other indirect chan-
nels, such as leaked build artifacts, logs, or backup files, all
of which could expose file hashes or sizes.

4.2. New Attacks

Based on these assumptions and the preceding discus-
sion on the security properties that LFS servers must main-
tain, we identify four new attack vectors.

4.2.1. Private LFS File Leakage. In this attack, the ad-
versary exploits access control weaknesses or employs other
attack techniques to gain unauthorized access to LFS objects
stored in private repositories. This breach violates SP1 and
SP2, undermining both user privacy and data confidentiality.
Further, we consider files from deleted public repositories
as private and therefore potential targets for this attack.

4.2.2. LFS File Replacement. This attack exploits the LFS
server’s failure to verify file contents against their claimed
SHA-256 hashes. As a result of violating SP5, the adversary
can replace legitimate LFS objects with malicious or altered
content. While the LFS client would detect this discrepancy
during a git clone or git pull operation, causing the process
to fail (DoS) and impacting availability, the manipulated
files could still be downloaded through non-Git interfaces. If

these interfaces do not issue appropriate warnings, the attack
poses a significant supply-chain risk and compromises data
integrity. The violations of SP3 and SP4, allowing attackers
to upload files to repositories owned by other users, may
further escalate damage.

Additionally, this file replacement attack can be used
to bypass virus scanning. For example, some Git providers,
such as Hugging Face [23], integrate with virus scan engines
like ClamAV. An attacker could initially upload a benign file
to deceive the virus scanner into marking the file as safe,
then subsequently overwrite it with malicious content. For
this specific attack, we assume the attacker can upload LFS
objects to the target repository, either by exploiting an access
control vulnerability, or by being granted a collaborator role.

4.2.3. Quota-Based Denial of Service Attack. In this
attack, the adversary depletes the allocated storage quota of a
public repository by uploading large files or excessive LFS
objects. Once the quota is exhausted, the LFS server will
deny service to legitimate users of the repository, directly
impacting its availability. This attack becomes more severe if
the platform lacks support for LFS object management and
deletion, leaving the repository owner unaware of the attack.
As a result, the owner may be forced to either purchase
additional storage, incurring undue financial costs, or delete
and recreate the repository—a disruptive and impractical
solution. This attack is enabled by breaches of SP3, SP6
and SP10.

4.2.4. Quota Escape. This attack involves the misuse of
LFS as a means to bypass the storage quota limitations en-
forced by the Git platform. By exploiting LFS, the adversary
can treat the platform as a form of free network storage,
resulting in significant storage and bandwidth costs for the
platform provider. Unlike the Quota-Based DoS attack, in
which the victim is a specific repository owner, here the
platform itself becomes the victim, bearing the financial
consequences of storage abuse. This attack involves multiple
security properties, including SP3 and SP7 through SP11.

5. Vulnerability Detection Framework

The heterogeneous nature of infrastructures and the
diverse functionalities supported across platforms signifi-
cantly expand the range of potential attack surfaces, thereby
complicating the task of universal vulnerability detection.
Nevertheless, we observe that despite these differences,
platforms consistently share a set of common "Supported
Features". This insight guides our approach: by leveraging
these supported features, we can systematically identify core
security properties that are broadly applicable across plat-
forms. To achieve this, we decompose each security property
into a series of targeted checks, thereby constructing a
modular detection framework. As illustrated in Figure 3 and
detailed in Algorithm 1, our framework begins with initial
preparation and feature collection, followed by systematic
property checks for each proposed security property. Any
violations of these properties are then validated to confirm
vulnerabilities and evaluate their potential impact.

Figure 3: Overview of our work.

Algorithm 1 Security violation and attack detection.

Symbol Definitions:
AF : All features (e.g., SSH Keys, Fork Public Repos-
itory, Deploy Key)
F : Supported feature set of the platform
M : All property check modules
V : Set of detected property violations
A: Set of detected attacks

Step 1: Preparation and Feature Collection
1: Preparation (e.g., Creating accounts and repositories)
2: for each feature f ∈ AF do
3: if CHECKSUPPORTED(f) then
4: F ← F ∪ f
5: end if
6: end for

Step 2: Property Check
7: for each property check module Mi ∈M do
8: if CHECKAPPLICABLE(Mi, F) then
9: Vi ← DETECTVIOLATIONS(Mi)

10: V ← V ∪ Vi

11: end if
12: end for

Step 3: Vulnerability Validation
13: if V ̸= ∅ then
14: A← PERFORMATTACKS(V)
15: EVALUATEIMPACT(A)
16: end if

Output: Property violations V and Attacks A

5.1. Preparation

To thoroughly test all the security properties, we outline
the following preparations for setting up the testing envi-
ronment. For each Git platform, two accounts, referred to as

User A and User B, are created. User A, acting as the victim,
is responsible for creating both a private repository and a
public repository, denoted as RA

priv and RA
pub, respectively.

Meanwhile, User B, acting as the attacker, creates a private
repository, denoted as RB

priv. If the platform supports fork-
ing, User B will fork RA

pub, resulting in a forked repository
RB

fork. Subsequently, User A generates and adds an SSH
key KA

rw as a personal SSH key able to read and write,
and configure key Kro as a read-only deploy key for RA

priv.
Similarly, User B generates and adds another SSH key KB

rw

as his personal SSH key. If the platform does not support
SSH keys, we will instead create personal access tokens for
the accounts, and employ Basic authentication instead.

After these preparatory steps, we will run our tool to
upload a file, denoted as F , to RA

priv using KA
rw, in strict

accordance with the protocol, and then download the file
and verify it to ensure our client implementation operates
as expected. Additionally, we collect information about the
platform’s supported features, as outlined in Section 2.2.
Specifically, we inspect the platform’s web interface to ver-
ify the availability of various functionalities. Furthermore,
by analyzing the traffic generated by the LFS protocol, we
confirm whether the platform employs Cloud Storage Direct
Upload and whether the LFS endpoints can be predicted.

5.2. Property Checking

Following the preparation phase, we identify violations
of the security properties outlined in Section 3. To accom-
modate the diversity of platforms, we design our property
checking process to be modular with scalable test attempts.
Moreover, to enhance testing efficiency, we ensure that each
property check is enabled only when relevant. The system
is also easily extendable, allowing for the integration of new
attack methods targeting the same security properties. The
majority of these checks are performed automatically by
our tool, requiring minimal manual effort, such as quota
usage monitoring. If the tool detects a violation of the
security properties, such as unauthorized access attempts, we

will undertake further vulnerability validation, as detailed
in Section 5.3. Below are the detailed modules for property
checks and their corresponding test attempts.

5.2.1. Access Control Check: Read. Given that file F has
already been uploaded to RA

priv, we first examine whether
User B can access the file content, under the assumption
that B possesses the knowledge of the file’s SHA-256 hash
and size. The following steps outline our approach, which
is universally enabled for all Git platforms:
1) Direct Read Access Attempt. We use KB

rw to request
an access token for reading from RA

priv. If the oper-
ation succeeds without raising any errors, it indicates
an authentication flaw within the SSH server, which
should not grant access tokens for private repositories
to unauthorized users.

2) Cross-Repository File Access Attempt. We use KB
rw

to obtain an access token for RB
priv, then attempt to

download from RB
priv using the same SHA-256 hash and

size as file F in RA
priv. This test verifies that LFS objects

are not shared across repositories, as such sharing would
violate SP1 by permitting cross-repository file access
without sufficient isolation. Additionally, if the download
URL provided by the batch API appears predictable
(Predictable LFS Endpoint feature), an additional down-
load attempt will be made by directly accessing the
LFS endpoint of RB

priv, allowing for a more thorough
investigation of the access control mechanisms of LFS
endpoints. This approach has been effective in identify-
ing several leakage vulnerabilities in practice.

3) Cross-Repository Token Attempt. We use KB
rw to ob-

tain an access token for RB
priv, and call batch API of

RA
priv or directly access the LFS download URL (if

predictable) with the acquired token. This test targets
misconfigurations in the LFS server that rely solely on
the SSH Server to validate user permissions.

4) Cross-Repository Empty Upload Attempt. Inspired
by the GitLab file leakage vulnerability highlighted
in Section 2.3, we use KB

rw to attempt uploading an
empty file to RB

priv, specifying the same object ID (oid)
as file F . Additionally, we experiment with various
Content-Type header settings during the upload pro-
cess, such as omitting the header or providing invalid
values, to observe the LFS server’s behavior under these
conditions, thus assessing compliance with SP2.

5.2.2. Access Control Check: Write. This section exam-
ines whether unauthorized users can upload LFS objects to
repositories they do not own. The following steps outline
our process:
1) Direct Upload Attempt to a Private Repository. Using

KB
rw, we request an access token to upload an LFS

object to RA
priv. This token is then utilized to call the

batch API of RA
priv or directly upload LFS objects if

the upload URL is predictable. Additionally, if the SSH
server provided a read access token during the prior read
attempt, we also use this token to attempt an upload.

2) Direct Upload Attempt to a Public Repository. Sim-
ilarly, we use KB

rw to request two access tokens, one
for download and one for upload, to RA

pub. Since public
repositories are expected to allow read access, it is an-
ticipated that User B can obtain a read token. However,
if the same token also permits file uploads, this would
constitute a violation of SP3 and expose an access control
vulnerability.

3) Anonymous Access Attempt to a Public Repository.
Furthermore, we attempt to use an empty Authorization
header to upload to the public repository RA

pub, to de-
termine whether an attacker can upload objects without
creating an account.

4) Deploy Key Upload Attempt. We use Kro to attempt
to upload files to RA

priv. This action should be rejected
according to SP4, thereby confirming that the deploy key
is restricted to read-only access.
The first three checks are applicable as long as the

platform supports the Public Repository feature, which is
commonly available. The final check is only applicable if
the platform supports the Deploy Key feature.

5.2.3. File Integrity Check. To evaluate SP5, we conduct
a test by uploading an LFS object with deliberately manipu-
lated content, such that its Object ID (SHA-256 hash) does
not match its actual content. Upon successful upload of the
manipulated file, we then attempt to download it through
the web interface to confirm the violation.

If the platform supports the Cloud Storage Direct
Upload feature, an optimization can be applied. In this
case, the Batch API returns a pre-signed URL, allowing
the client to upload the file directly to the cloud storage
service. By analyzing this upload link, we can infer whether
the cloud service enforces file integrity checks, such as
validating the X-Amz-Content-Sha256 parameter in
AWS S3. If such checks are absent, a violation of SP5 can be
immediately reported. A related case study will be provided
in Section 6.4.2.

5.2.4. Quota Increase Check. For quota related checks,
LFS Usage Query feature must be supported, otherwise
quota usage value cannot be queried. In this section, we
assess the potential violation of SP6 and SP10, which would
indicate that an attacker can increase the quota usage of
repositories owned by other users. Specifically, we attempt
to increase the LFS usage of the public repository RA

pub
without utilizing victim A’s identity. We first record the
repository’s LFS usage data and then proceed with the
following steps to determine if the quota usage increases:
1) Cross-Repository Download. If we have confirmed that

cross-repository downloads of LFS objects are possible,
we analyze the LFS usage data to check whether this
download action consumes the quota of the public repos-
itory, thus checking whether SP6 is violated.

2) Fork Upload. We upload a new LFS object to the forked
repository RB

fork, and subsequently examine the quota
usage of both RB

fork and its parent repository RA
pub. If the

usage of RA
pub increases while RB

fork remains unaffected,
we can confirm the violation of SP10 and the feasibility
of a quota-based DoS attack by uploading objects to the
attacker’s forked repository. This check is applicable only
if the Fork Public Repository feature is supported.

Additionally, we assess whether the LFS server adheres
to SP9 by investigating whether the attacker can manipulate
the reported quota usage value. Specifically, we attempt to
alter the size parameter during each step of the protocol
interactions to detect any potential incorrect quota incre-
ments. For instance, if we upload a 1MB file but falsely
claim its size as 1GB, and the quota usage of the target
repository increases by 1GB, we can confirm a violation of
SP9. Such a violation would significantly amplify the impact
of a DoS attack by allowing the attacker to artificially inflate
the repository’s quota usage.

5.2.5. Quota Escape Check. Using user B’s identity, we
upload a new file to RB

priv, with the objective of bypassing
the recording of the upload or registering a smaller file size
than was actually uploaded. This is verified by manually
checking the quota usage of RB

priv after the upload.

1) Skipping the Verify Call. We attempt to skip the verify
call during the upload process and check whether the
quota is unchanged but the LFS server still permits the
download of the object, effectively excluding it from
quota management. This violation of SP7 provides at-
tackers with the potential to bypass quota management
and abuse the platform.

2) Delaying the Verify Call. To evaluate whether SP8
is violated, we upload multiple LFS objects without
executing the final verify API call, then after varying
time intervals (e.g., 24 hours, 3 days, and 7 days),
we complete the pending verify calls and assess if the
uploaded files remain accessible for download.

3) Size Parameter Manipulation. Building on our pre-
vious discussion of SP9, instead of inflating the size
parameter, we test whether using a smaller value during
various stages of the protocol could result in the LFS
server incorrectly registering a reduced quota usage. Ad-
ditionally, we experiment with negative size parameters
to determine whether the recorded quota usage can be
decreased.

4) Deleting the Repository. To evaluate SP11, we delete
and recreate the repository RB

priv with the same name
and attempt to download the previously uploaded objects.
Additionally, we test whether the LFS objects can still
be downloaded from other repositories.

5) Archiving the Repository. To explore the possibility
that read-only restrictions may not apply to LFS uploads
and that increased quota usage may not be accurately
recorded in such cases, we attempt to upload LFS ob-
jects after archiving the repository RB

priv, followed by
an examination of any changes in quota usage. This
check is only enabled for platforms supporting Archive
Repository feature.

5.3. Vulnerability Validation

5.3.1. LFS File Leakage. Violations of SP1 or SP2 often
result in LFS File Leakage attacks. Upon detecting such
violations during property checking in Section 5.2.1, we
confirm the vulnerability by verifying the content of the
downloaded file F . Specifically, confirmation is achieved if:
(1) User B obtains an auth token for RA

priv and successfully
downloads F using the batch API; (2) File F is accessible
from other repositories through either the Batch API or a
predictable LFS file endpoint; (3) A download request for
F with an auth token from another repository, RB

priv, is
granted; or (4) a cross-repository empty upload is executed
successfully, and the subsequent download yields the correct
content of F .

5.3.2. LFS File Replacement. When a violation of SP5 is
confirmed, it indicates that manipulated file content has been
accepted by the LFS storage server, and is now available for
download. Following this, we evaluate the potential threats
and explore the extent of the damage this vulnerability could
cause.

Using file F in the repository RA
priv as the target, we

first upload the manipulated content to an attacker-controlled
repository RB

priv, while specifying the same SHA-256 hash
as F . We then download F from RA

priv to inspect its content,
determining whether this upload action has resulted in the
overwriting of the file in the victim’s repository. Further-
more, if prior access control checks revealed violations of
SP3 or SP4, we explore the possibility of directly overwrit-
ing an existing file in the target repository by uploading
the modified content. Notably, a violation of SP5 alone
is sufficient to enable a supply chain attack, provided the
attacker has gained write access to a critical repository. This
step aims to evaluate the potential escalation of such an
attack and its broader impact.

In scenarios where the Git platform supports malware
scanning, we also examine whether this vulnerability can be
exploited to bypass this security mechanism. A case study
illustrating this type of exploitation will be presented in
Section 6.4.2.

5.3.3. Quota-based DoS Attack. A Quota-based DoS at-
tack aims to exhaust the available LFS space in public repos-
itories owned by other users, thereby preventing legitimate
users from accessing LFS files in the affected repository. If
we identify violations of SP3 or SP4 that allow us to upload
files to RA

pub, we monitor the repository’s usage increment
to confirm the feasibility of a Quota-based DoS attack.

Additionally, violations of SP6 and SP10 provide further
avenues to increase the usage of the target public reposito-
ries, through methods such as cross-repository downloads
and fork uploads, both of which directly contribute to a
DoS attack.

Moreover, a violation of SP9 can significantly escalate
the damage, which means recorded quota usage can be
different than the size of the uploaded file. To investigate
this, we employ size parameter manipulation techniques in

TABLE 1: Supported features of Git platforms.

Category Platform
Public

Repository

Public LFS File
Downloadable via

Webpage/Anon. Git
LFS Quota Policy

LFS Usage
Query

LFS Object
Deletion

LFS SSH Deploy Key Archive Repo
Fork Public

Repo

Git-centric Platforms

GitHub ✓ ✓ / ✓
1GB/user
1GB bw/month

✓ ✗ ✓ ✓ ✓ ✓

Gitee ✓ ✓ / ✓ No free quota ✓ ✓ ✓ ✓ ✓ ✓

BitBucket ✓ ✓ / ✓ 1GB/user ✓ ✓ ✓ ✓ ✗ ✓

GitCode ✓ ✗ / ✓ 2GB/user ✓ ✗ ✓ ✗ ✓ ✓

Self-hosted Git
Providers

GitLab ✓ ✓ / ✓ 10GB/user ✓ ✗ ✓ ✓ ✓ ✓

Gitea ✓ ✓ / ✓ Not supported ✓ ✗ ✓ ✓ ✓ ✓

RhodeCode ✓ ✓ / ✓ Not supported ✗ ✗ ✗ ✗ ✓ ✓

Gogs ✓ ✗ / ✗ Not supported ✗ ✗ ✗ ✗ ✗ ✓

Cloud Service

Aliyun Codeup ✗ - / - 5GB/repo ✓ ✓ ✓ ✓ ✓ ✗

TencentCloud Coding ✓ ✗ / ✓ 20GB/user ✓ ✗ ✓ ✓ ✗ ✗

HuaweiCloud ✓ ✓ / ✗ 1GB/repo,10GB/user ✓ ✗ ✓ ✓ ✓ ✓

Azure Repos ✓ ✓ / ✓ No policy docs ✗ ✗ ✗ ✗ ✗ ✗

AI Platforms Huggingface ✓ ✓ / ✓ No policy docs ✗ ✗ ✓ ✗ ✗ ✗

ModelScope ✓ ✓ / ✓ No policy docs ✗ ✗ ✗ ✗ ✗ ✗

each scenario to determine whether such manipulation could
enable a low-cost DoS attack against any public repository.

5.3.4. Quota Escape. Quota escape attacks exploit weak-
nesses in access control and quota management, allowing
attackers to upload and download files arbitrarily with-
out proper constraints. These attacks can be carried out
through several vectors, such as abusing other users’ quota
or employing various quota bypass techniques. Specifically,
abusing other users’ quota can be done via direct uploads
(SP3) or fork uploads (SP10). Additionally, SP7 through
SP11 offer multiple avenues for quota escape. For exam-
ple, if the LFS server queries a file’s existence from the
cloud service without verifying the corresponding database
records, skipping the verify API call (SP7) becomes a viable
vector for a quota escape attack. We consider the Quota
Escape vulnerability validated if the uploaded file remains
retrievable and the recorded quota usage is less than the
actual file size.

In summary, assessing the security of Git LFS imple-
mentations presents unique challenges due to the diversity
of platform features and infrastructure configurations. Our
framework adopts a modular design that maps security
properties to specific, targeted checks based on platform fea-
tures. This divide-and-conquer approach enables systematic
detection of vulnerabilities while maintaining extensibility
for new platforms and features.

6. Real-world Evaluation

In this section, we explore the following research ques-
tions: ① What features are supported by Git platforms?
(Section 6.1) ② Which security properties are violated?
(Section 6.2) ③ Do these violations lead to vulnerabilities
that facilitate novel attacks? (Section 6.3)

6.1. Git Platforms and Supported Features

To assess the effectiveness of our design and uncover
real-world vulnerabilities, we selected 14 Git platforms

spanning four distinct categories to conduct detection work-
flows in real-world environments, shown in Table 1. These
platforms were chosen based on their popularity, widespread
usage, and availability. Additionally, we considered their
diversity in architecture and features to ensure a comprehen-
sive evaluation across different providers. AWS and Google
Cloud are excluded due to availability issues, as they are
phasing out their Git services and restricting access for new
users. Table 1 lists the tested platforms and their supported
features, focusing on LFS-related features, including ac-
cessibility, quota mechanisms, SSH support, and archiving
(Section 2.2). Most platforms support public repositories,
with the exception of Aliyun Codeup, which is enterprise-
focused. LFS objects are generally downloadable via both
the web interface and Git, though some platforms either
require user authentication or do not support web-based
downloads.

GitHub is the only platform that enforces a bandwidth
limit (1GB per month for free-tier users). Among self-hosted
solutions, GitLab is the only one that supports LFS quota
enforcement, with a 10GB limit on GitLab.com. Further-
more, none of the AI platforms we evaluated document
quota policies, likely due to the nature of large datasets
and models. Platforms with quota limits allow users to
check usage, and most update usage data immediately after
uploads, though TencentCloud Coding updates usage data
only after a Git commit, while HuaweiCloud may delay
updates until the next upload. Only three platforms allow
users to view and delete LFS objects, a valuable feature that
enables users to manage storage efficiently. When the quota
is depleted, this feature offers an alternative to purchasing
additional space or recreating repositories.

Most platforms support SSH-based LFS authentication,
while others are limited to password or personal access
token authentication. More than half support deploy keys,
while the others may lack this feature due to early-stage de-
velopment or alternative workflows (e.g., AI platforms with
custom APIs). Archiving and forking are also unsupported
by AI platforms. Although TencentCloud Coding and Azure
Repos offer archiving, it renders repositories unreadable,

P 8
7 %

P 9
1 3 %

P 1 0
1 0 %

P 1 1
1 7 %

P 6
3 %

P 7
7 %

P 4
3 %

P 5
1 7 %

P 3
1 0 %

P 1
1 3 %

P 2
0 %

Figure 4: Distribution of violations of LFS Security Prop-
erties in 14 platforms. (N=30)

which does not meet the requirements for a Quota Escape
attack. Therefore, we have marked them as not supporting
the Archiving Repository feature in Table 1.

6.2. Observed Violations of Security Properties

Following the detection workflow, our tool identified 30
Security Property violations across 14 Git platforms. Includ-
ing manual preparation and analysis, evaluating each plat-
form took less than one hour, with the automated component
executing in under one minute. To maintain ethical standards
and address vulnerability disclosure concerns from stake-
holders, we have anonymized platform names by assigning
random number IDs in the table. As shown in Table 3
(in Appendix A), the majority of platforms (12 out of 14)
violated at least one security property. Notably, one plat-
form (ID 11) violates six security properties, highlighting
significant oversights in its LFS server implementation. This
creates significant opportunities for attackers to compromise
the platform’s confidentiality, integrity, and availability. The
highest number of violations (five) occurred with SP5 and
SP11, indicating widespread neglect in implementing proper
file content validation and effective quota mechanisms for
repository deletion.

Figure 4 illustrates the distribution of violations for each
property. This distribution highlights that nearly all security
properties have corresponding violations, underscoring both
the effectiveness of our methodology and the critical im-
portance of these properties. While we did not identify any
current real-world instances violating SP2, the previously
documented CVE-2019-6786 in Section 2.3 represents a
historical example of this violation category.

6.3. Uncovered Novel Vulnerabilities

After the vulnerability validation step and manual con-
firmation, we identified 36 vulnerabilities across 14 Git
platforms. The vulnerability counts are listed in Table 2.
The aggregate count of vulnerability totals 36, which is
higher than the violation count since individual violations
may manifest in multiple vulnerabilities. Notably, uploading

TABLE 2: Distribution of found vulnerabilities across four
categories.

ID File
Leakage

File
Replacement

Quota-based
DoS Attack

Quota
Escape Total

1 0 0 1 1 2
2 0 0 2 2 4
3 0 0 0 0 0
4 0 1 0 1 2
5 0 0 0 1 1
6 1 1 0 1 3
7 0 0 0 0 0
8 1 0 0 1 2
9 0 1 0 2 3

10 0 0 1 1 2
11 1 2 1 3 7
12 1 0 1 3 5
13 0 1 0 0 1
14 0 0 1 3 4

Total 4 6 7 19 36

to public repositories owned by other users often constitutes
both a Quota-based DoS attack and a Quota Escape vulner-
ability, as it drains the owner’s quota and enables storage
abuse through retrievable files. Despite sharing a common
attack vector, these two vulnerabilities operate under distinct
threat models and assumptions, and are thus regarded as
separate vulnerabilities within the context of our analysis.
Furthermore, all of the affected platforms have a broad
user base, meaning that security flaws in these systems
could affect a large number of users. For instance, the most
vulnerable platform, P11, has over 3 million users, making
it particularly susceptible to large-scale exploitation.

As shown in Table 2, Quota Escape vulnerabilities repre-
sent the predominant category, accounting for 52.7% (19 out
of 36) of total identified vulnerabilities and affecting 78.6%
(11 out of 14) of the Git platforms analyzed. This category
also exhibits the most diverse attack vectors. Among these,
six exploit other users’ quota, five delete the repository,
four manipulate size parameters, two delay the verify call,
one archives the repository, and one skips the verify call.
This distribution reveals significant weaknesses in quota
enforcement mechanisms across Git platforms, indicating
systemic vulnerabilities in storage resource protection. The
second most common vulnerability category is Quota-based
DoS Attacks, with seven vulnerabilities identified across
six Git platforms. Upload-based DoS attacks constitute the
majority, comprising three Direct Upload and three Fork
Upload vulnerabilities, highlighting widespread permission
control issues and inherent design flaws in repository forking
mechanisms. Furthermore, our analysis revealed a Cross-
Repository Download vulnerability in one of the platforms,
where the platform automatically deducts quota from public
repositories when processing download requests for files
that exist in other repositories but are absent from the
current repository. Moreover, this platform’s implementation
implicitly trusts the size parameters specified in download
requests, allowing attackers to arbitrarily exhaust storage
quota through a single request.

We identified six File Replacement vulnerabilities affect-
ing five Git providers, posing significant risks for supply
chain attacks and virus scan circumvention. Our analysis

indicates that the globally shared LFS storage architecture
exacerbates these vulnerabilities, enabling attackers to over-
write files in popular repositories by uploading malicious
content with the same SHA-256 object identifier as the
original. Section 6.4.1 and 6.4.2 provide detailed case stud-
ies on cross-repository file overwrite and virus scan bypass
exploitation, respectively.

Moreover, our investigation revealed four Git platforms
susceptible to LFS File Leakage vulnerabilities. Notably,
while certain platforms implemented proper permission
checks in their SSH server and Batch API infrastructure,
the predictable nature of LFS file download URLs, com-
bined with globally shared storage design and inadequate
access controls, facilitates unauthorized access. An attacker
with knowledge of a file’s SHA-256 hash can exploit this
vulnerability to obtain any LFS file, circumventing intended
access restrictions.

6.4. Case Studies

To clarify the security risks and attack vectors, in this
section, we present several case studies on various platforms
to explain the vulnerabilities and how attackers can exploit
them. Due to space limitations, additional case studies are
included in the GitHub repository, which include a Quota
Escape attack that involves resetting the repository and a
permission check bypass that exploits the Predictable LFS
Endpoint feature.

6.4.1. Cross-Repository File Overwrite. RhodeCode [24]
is an open-source enterprise code management platform that
offers unified security and collaboration for Git, Mercurial,
and Subversion repositories. It has gained traction within the
software development community, particularly among enter-
prises necessitating comprehensive source code management
capabilities across multiple version control systems. How-
ever, during testing, we identified a vulnerability related to
Cross-Repository LFS File Overwrite attacks. An attacker
could upload manipulated content to his own repository by
specifying a SHA-256 hash matching that of a target file in
another repository. RhodeCode would accept such uploads,
returning the message {"upload": "ok"}, effectively
overwriting the original file’s contents. Further analysis in-
dicates that the root cause lies in the use of shared backend
storage paths without repository-level isolation, combined
with the absence of content verification against claimed
SHA-256 values, violating SP5. This vulnerability poses
a significant risk for supply chain attacks, as it does not
require any specific permissions from the attacker, and any
public repository hosted on the platform is a potential target.

After we reported this vulnerability to the developers,
they promptly addressed the issue and released a new ver-
sion of the software. Figure 5 provides a simplified repre-
sentation of the corresponding patch [25]. The patch first
verifies whether the file being uploaded is already present
in the storage, thereby preventing the overwriting of existing
files. Additionally, within the file chunk processing loop, the
code digest.update(chunk) is introduced to compute

1 +import hashlib
2
3 # Function to upload LFS object with OID validation
4 def lfs_objects_oid_upload(request):
5 + # Step 1: Check if OID is already in store
6 + if store.has_oid():
7 + return {'upload': 'ok', 'state': 'in-store'}
8
9 + # Step 2: Initialize SHA256 digest

10 + digest = hashlib.sha256()
11
12 + # Step 3: Update digest for each written chunk
13 for chunk in request_body:
14 + digest.update(chunk)
15 engine.write(chunk)
16
17 + # Step 4: Compare computed digest with OID
18 + hex_digest = digest.hexdigest()
19 + if hex_digest != oid:
20 + engine.cleanup() # Trigger cleanup on mismatch
21 + return error_response('oid mismatch')
22
23 - return {'upload': 'ok'}
24 + return {'upload': 'ok', 'state': 'written'}

Figure 5: Patch snippet from RhodeCode.

the SHA-256 hash of the file. Finally, if the calculated hash
does not match the claimed object ID (oid), the upload is
aborted, an error message is returned, and the uploaded file
is cleaned up to prevent it from being saved to storage,
thereby ensuring compliance with SP5.

6.4.2. Malware Scanning Bypass. An additional critical
implication of the file overwrite vulnerability lies in its po-
tential to bypass security mechanisms, particularly malware
scanning protocols. Platform Y (anonymized due to ongoing
disclosure and pending resolution), a widely recognized
artificial intelligence platform, employs Git LFS for the
storage of model weights and datasets. A key feature of
this platform is its automated malware scanning, which is
triggered upon each new Git commits. In our testing, we
discovered that Platform Y uses AWS S3 as its LFS storage
server. The Batch API returns pre-signed upload URLs that
follow the pattern:

https://<redacted_s3_domain>/repos/<repoid_pref
ix>/<repoid>/<sha256>?X-Amz-Content-Sha256=UNSI
GNED-PAYLOAD&X-Amz-Expires=900&X-Amz-Signature=
<signature>&...

From this URL, we observed two notable security im-
plications: the upload link remains valid for 900 seconds,
and the parameter X-Amz-Content-Sha256 is set to
UNSIGNED-PAYLOAD, meaning AWS S3 does not verify
the integrity of the uploaded content, violating SP5. This
design flaw allows attackers sufficient time to first upload a
benign file, complete the Git commit to pass the malware
scan, and then overwrite the file with malicious content
using the same upload URL.

To validate this vulnerability, we performed an experi-
ment using the eicar_test_file, a standard virus scan
engine test file [26]. Initial tests confirmed that both direct
uploads and LFS-mediated submissions of this file were
appropriately flagged as unsafe. However, by employing the
file replacement technique described above, we successfully

Figure 6: Platform Y’s web interface shows two files with identical malicious payload. The top file bypassed the malware
detection via the LFS file replacement attack, while the directly uploaded file was flagged as unsafe (anonymized display).

evaded the malware scanning process. Figure 6 illustrates
comparative screenshots of two files with identical content,
demonstrating empirical evidence of the successful malware
scanning bypass.

7. Discussion

Ethics Considerations. In conducting security tests on live
Git LFS servers, we followed strict ethical guidelines to
prevent harm to users and platforms. We restricted our
testing to two isolated accounts we created and used the
EICAR test file [26], a standard, non-malicious tool, to
detect malware scanning bypass vulnerability. With respect
to potential DoS vulnerabilities, we relied on reported quota
values to determine attack feasibility, avoiding excessive
resource consumption or service disruption. All discovered
vulnerabilities were promptly reported through responsible
disclosure channels, and we are actively working with af-
fected platforms to address these security issues.

Root Cause and Mitigations. The attacks identified in
this paper expose significant vulnerabilities in the design

and implementation of Git LFS servers. The LFS protocol
specification offers only minimal security guidance, dele-
gating critical aspects such as access control models and
quota management to Git platform providers. As a result,
these vulnerabilities often stem from development oversights
and a limited understanding of the LFS infrastructure. In
particular, the multi-user, multi-repository nature of modern
Git workflows—combined with the multi-step handling of
LFS objects—leads many platforms to inadequately enforce
access control and integrity validation at each stage. Fur-
thermore, the integration of Git LFS with third-party cloud
storage complicates the trust boundary, necessitating strict
access control and content validation from all involved par-
ties. Finally, Git LFS may exhibit insecure state transitions,
creating opportunities for incomplete mediation and loosely
coupled workflow steps, which in turn allow certain APIs
to be skipped, delayed, or manipulated.

To enhance LFS security, Git platforms should imple-
ment comprehensive permission checks at all endpoints,
and enforce content validation using mechanisms like
X-Amz-Content-Sha256 headers or content hash ver-
ification (as shown in Figure 5), ensuring LFS objects are

protected from tampering. These measures will help pre-
vent Private File Leakage, File Replacement, and Quota-
based DoS attacks. To mitigate Quota Escape attacks and
prevent resource abuse, platforms should implement precise
and reliable quota tracking mechanisms. Additionally, the
enforcement of rate-limiting policies and the deployment
of robust monitoring systems are recommended to ensure
that quota checks and updates are performed synchronously,
while also enabling the detection of anomalous storage
behavior. When combined with adherence to the 11 Security
Properties outlined in this paper, these defensive strategies
can substantially reduce the risk of security breaches in LFS
implementations, thereby fostering a more secure environ-
ment for managing LFS files.

Limitations and Future Work. While this paper presents
the first comprehensive security analysis of Git LFS, certain
limitations remain. First, the detailed attack techniques we
identified may represent a subset of potential vulnerabil-
ities. Other attack vectors may exist that have not been
uncovered in our current analysis. However, the framework
we developed for testing LFS server security is extensible
and can accommodate future discoveries of additional attack
vectors. As the security landscape evolves, researchers and
practitioners can build on our work to identify new threats
and implement defenses accordingly. Second, although we
tested 14 popular Git platforms, this coverage may not
fully encompass the entire ecosystem of Git platforms that
support Git LFS. Nevertheless, we focused on analyzing
the most widely used platforms to ensure that our findings
have broad relevance. In future work, we plan to extend our
testing to include more platforms, especially those that may
have smaller user bases but still rely on Git LFS for file
management.

8. Related Work

File Storage Security. File storage security is a critical
concern, fraught with numerous vulnerabilities, including
unauthorized access [27], data leakage [28], [29], and data
corruption [30]. These challenges have been under investi-
gation for years. For instance, early research [31] in 2009
delved into data leakage through side-channel attacks, and
recent research [32], [33] proposed approaches to under-
stand the security implications of exposed cloud services
and cloud storage. Various strategies have been developed
to mitigate such security risks, including the management
mechanism designed to bolster security protocols [34], in-
novations in cloud storage that enhance data integrity and
confidentiality [35], and mitigations of access-control risks
[36]. Moreover, novel protocols and schemes for secure file
storage continue to be developed, including CDStore [37],
EPCBIR [38] and an efficient public auditing protocol [39].
These works collectively push the boundaries of file storage
security, but none of them address the file storage security
of Git LFS.
GitHub Security Studies. As the most prominent code
hosting platform, GitHub’s security is of paramount im-

portance. Existing work on GitHub security spans several
key areas, like GitHub Copilot [40], GitHub Actions [41],
and malware presence in fork repositories [42]. Besides,
Meli et al. [43] and Sinha et al. [44] both addressed the
leakage of secrets in public GitHub repositories, and Saha
et al. [45] further developed machine learning techniques for
better detection of secrets within source code. These studies
collectively highlight a multi-faceted approach to addressing
security vulnerabilities. However, despite the critical role
of LFS in managing large assets and the broader support
for LFS across various Git platforms, the security of LFS
remains under-explored. There are few documented server-
side Common Vulnerabilities and Exposures (CVEs) [7],
[15], [16], [17] related to this feature, but they pertain
solely to GitLab. This reveals a significant gap in the current
research landscape that this paper seeks to address.

9. Conclusion

In this paper, we presented the first comprehensive se-
curity analysis of Git LFS implementations, identifying crit-
ical vulnerabilities across major platforms. By establishing
11 essential security properties and developing a modular
testing framework, we uncovered four novel attack vectors
that enable unauthorized access, malware injection, DoS
attack and resource abuse. Our analysis revealed 36 pre-
viously unknown vulnerabilities across 14 popular Git plat-
forms, highlighting the prevalence of these security issues
and demonstrating the effectiveness of our framework as a
practical security assessment tool. We recommend that all
Git platforms implement comprehensive permission checks
at all endpoints, enforce rigorous content validation, and
adopt accurate quota tracking systems. Through responsible
disclosure and our open-source testing framework, we have
not only improved the security of existing platforms, but
also laid the groundwork for future security research in Git
LFS, which is increasingly critical for managing large files
in modern software development workflows.

Acknowledgment

We sincerely appreciate our shepherd and all the anony-
mous reviewers for their insightful and valuable feed-
back. This work was partly supported by the NSFC under
No. U244120033, U24A20336, 62172243, 62402425 and
62402418, the China Postdoctoral Science Foundation under
No. 2024M762829, the Zhejiang Provincial Natural Science
Foundation under No. LD24F020002, and the Zhejiang
Provincial Priority-Funded Postdoctoral Research Project
under No. ZJ2024001.

References

[1] Git LFS, “Git Large File Storage (LFS),” https://git-lfs.com, 2024,
accessed Oct. 2024.

[2] StackOverflow, “Is git good with binary files?” https://stackoverf
low.com/questions/4697216/is-git-good-with-binary-files/4697279,
2011, accessed Oct. 2024.

[3] S. Just, K. Herzig, J. Czerwonka, and B. Murphy, “Switching to Git:
The Good, the Bad, and the Ugly,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), 2016, pp.
400–411.

[4] GitHub, Inc., “Configuring git large file storage,”
https://docs.github.com/en/repositories/working-with-files/manag
ing-large-files/configuring-git-large-file-storage, accessed Oct.
2024.

[5] Gogs contributors, “Gogs: Git Large File Storage (LFS),” https://gi
thub.com/gogs/gogs/blob/main/docs/user/lfs.md, accessed Oct. 2024.

[6] Hugging Face, “Getting started with repositories,” https://huggin
gface.co/docs/hub/repositories-getting-started#set-up, accessed Oct.
2024.

[7] MITRE, “CVE-2019-6786: GitLab LFS Incorrect Access Control
Vulnerability,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CV
E-2019-6786, 2019, accessed Oct. 2024.

[8] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[9] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in 25th Annual Network And
Distributed System Security Symposium (NDSS 2018). Internet Soc,
2018.

[10] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” Advances in neural information processing
systems, vol. 31, 2018.

[11] CODING, “Product Pricing,” https://coding.net/pricing, accessed
Oct. 2024.

[12] MITRE, “CVE-2022-24826: Windows-specific path traversal vul-
nerability in Git LFS 2.12.1-3.1.2 enables arbitrary code execution
through malicious executables when target programs are missing
from PATH.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CV
E-2022-24826, 2022, accessed Oct. 2024.

[13] ——, “CVE-2021-21300: Git versions 2.14.2+ vulnerable to arbitrary
code execution via symlink and Git LFS manipulation on case-
insensitive filesystems.” https://cve.mitre.org/cgi-bin/cvename.cgi?n
ame=CVE-2021-21300, 2021, accessed Oct. 2024.

[14] ——, “CVE-2021-21237: Git LFS before v2.13.2 on Windows is
vulnerable to arbitrary code execution when processing malicious
repositories containing git.bat/git.exe files, due to Go’s command
execution behavior.” https://cve.mitre.org/cgi-bin/cvename.cgi?nam
e=CVE-2021-21237, 2021, accessed Oct. 2024.

[15] ——, “CVE-2024-3035: A permission check vulnerability in GitLab
allowed unauthorized access to repositories via LFS tokens,” http
s://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-3035, 2024,
accessed Oct. 2024.

[16] ——, “CVE-2020-13355: An issue has been discovered in GitLab
CE/EE affecting all versions starting from 8.14. A path traversal is
found in LFS Upload that allows attacker to overwrite certain specific
paths on the server.” https://cve.mitre.org/cgi-bin/cvename.cgi?nam
e=CVE-2020-13355, 2020, accessed Oct. 2024.

[17] ——, “CVE-2020-10081: GitLab LFS import process allows unau-
thorized access to LFS objects,” https://cve.mitre.org/cgi-bin/cvena
me.cgi?name=CVE-2020-10081, 2020, accessed Oct. 2024.

[18] Amazon Web Services, Inc., “Amazon S3,” https://aws.amazon.com
/s3/, accessed Oct. 2024.

[19] GitHub, “About storage and bandwidth usage,” https:
//docs.github.com/en/repositories/working-with-files/managing-l
arge-files/about-storage-and-bandwidth-usage, 2024, accessed Oct.
2024.

[20] A. Larionov, “Git LFS Limitations,” https://github.com/git-lfs/git-lfs
/wiki/Limitations, 2023, GitHub Wiki page, last updated Sep. 2023.

[21] Maxim Ivanov, Nick Thomas et al., “GitLab workhorse issue #197:
Users can access the content of any LFS object when only OID and
size are known,” https://gitlab.com/gitlab-org/gitlab-workhorse/-/issu
es/197, 2018, accessed Oct. 2024.

[22] Hugging Face, “huggingface-hub 0.26.2,” https://pypi.org/project/h
uggingface-hub/0.26.2/, 2024, accessed Nov. 2024.

[23] ——, “Hugging Face Docs: Malware Scanning,” https://huggingfac
e.co/docs/hub/en/security-malware, 2022, accessed Oct. 2024.

[24] RhodeCode, “RhodeCode: Enterprise Code Management for Hg, Git,
SVN,” https://rhodecode.com/, 2024, accessed Oct. 2024.

[25] ——, “Commit a680a605 - RhodeCode VCS Server,”
https://code.rhodecode.com/rhodecode-vcsserver/changeset/a680a
60521bf02c29413d718ebca36c4f692ea4a?diffmode=unified, 2024,
accessed Oct. 2024.

[26] European Institute for Computer Antivirus Research (EICAR),
“EICAR Anti-Malware Test File,” https://www.eicar.org/download
-anti-malware-testfile/, 1998, accessed Oct. 2024.

[27] A. Markandey, P. Dhamdhere, and Y. Gajmal, “Data access security
in cloud computing: A review,” in 2018 International Conference
on Computing, Power and Communication Technologies (GUCON).
IEEE, 2018, pp. 633–636.

[28] A. Syed, K. Purushotham, and G. Shidaganti, “Cloud storage security
risks, practices and measures: A review,” in 2020 IEEE International
Conference for Innovation in Technology (INOCON). IEEE, 2020,
pp. 1–4.

[29] T. Bhatia and A. Verma, “Data security in mobile cloud computing
paradigm: a survey, taxonomy and open research issues,” The Journal
of Supercomputing, vol. 73, pp. 2558–2631, 2017.

[30] D. Zhe, W. Qinghong, S. Naizheng, and Z. Yuhan, “Study on data se-
curity policy based on cloud storage,” in 2017 IEEE 3rd International
Conference on Big Data Security on Cloud (BigDataSecurity), High
Performance and Smart Computing (HPSC) and Intelligent Data and
Security (IDS). IEEE, 2017, pp. 145–149.

[31] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM conference on Computer and
communications security, 2009, pp. 199–212.

[32] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Credit karma: Understand-
ing security implications of exposed cloud services through automated
capability inference,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 6007–6024.

[33] Y. Chen, Y. Li, Y. Lu, Z. Pan, Y. Chen, S. Ji, Y. Chen, Y. Li,
and Y. Shen, “Understanding the security risks of websites using
cloud storage for direct user file uploads,” IEEE Transactions on
Information Forensics and Security, vol. 20, pp. 2677–2692, 2025.

[34] M. T. Khan, C. Tran, S. Singh, D. Vasilkov, C. Kanich, B. Ur, and
E. Zheleva, “Helping users automatically find and manage sensitive,
expendable files in cloud storage,” in 30th USENIX Security Sympo-
sium (USENIX Security 21), 2021, pp. 1145–1162.

[35] A. Ileri, T. Chajed, A. Chlipala, F. Kaashoek, and N. Zeldovich,
“Proving confidentiality in a file system using DiskSec,” in 13th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), 2018, pp. 323–338.

[36] K. Borgolte, T. Fiebig, S. Hao, C. Kruegel, and G. Vigna,
“Cloud Strife: Mitigating the Security Risks of Domain-Validated
Certificates,” in Proceedings of the 25th Network and Distributed
System Security Symposium (NDSS), P. Traynor and A. Oprea,
Eds. Internet Society (ISOC), 2018. [Online]. Available:
http://dx.doi.org/10.14722/ndss.2018.23327

https://git-lfs.com
https://stackoverflow.com/questions/4697216/is-git-good-with-binary-files/4697279
https://stackoverflow.com/questions/4697216/is-git-good-with-binary-files/4697279
https://docs.github.com/en/repositories/working-with-files/managing-large-files/configuring-git-large-file-storage
https://docs.github.com/en/repositories/working-with-files/managing-large-files/configuring-git-large-file-storage
https://docs.github.com/en/repositories/working-with-files/managing-large-files/configuring-git-large-file-storage
https://github.com/gogs/gogs/blob/main/docs/user/lfs.md
https://github.com/gogs/gogs/blob/main/docs/user/lfs.md
https://huggingface.co/docs/hub/repositories-getting-started#set-up
https://huggingface.co/docs/hub/repositories-getting-started#set-up
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6786
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6786
https://coding.net/pricing
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24826
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24826
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21300
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21300
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21237
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21237
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-3035
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-3035
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13355
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13355
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10081
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10081
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-storage-and-bandwidth-usage
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-storage-and-bandwidth-usage
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-storage-and-bandwidth-usage
https://github.com/git-lfs/git-lfs/wiki/Limitations
https://github.com/git-lfs/git-lfs/wiki/Limitations
https://gitlab.com/gitlab-org/gitlab-workhorse/-/issues/197
https://gitlab.com/gitlab-org/gitlab-workhorse/-/issues/197
https://pypi.org/project/huggingface-hub/0.26.2/
https://pypi.org/project/huggingface-hub/0.26.2/
https://huggingface.co/docs/hub/en/security-malware
https://huggingface.co/docs/hub/en/security-malware
https://rhodecode.com/
https://code.rhodecode.com/rhodecode-vcsserver/changeset/a680a60521bf02c29413d718ebca36c4f692ea4a?diffmode=unified
https://code.rhodecode.com/rhodecode-vcsserver/changeset/a680a60521bf02c29413d718ebca36c4f692ea4a?diffmode=unified
https://code.rhodecode.com/rhodecode-vcsserver/changeset/a680a60521bf02c29413d718ebca36c4f692ea4a?diffmode=unified
https://www.eicar.org/download-anti-malware-testfile/
https://www.eicar.org/download-anti-malware-testfile/
http://dx.doi.org/10.14722/ndss.2018.23327
http://dx.doi.org/10.14722/ndss.2018.23327

[37] M. Li, C. Qin, and P. P. Lee, “CDStore: Toward Reliable, Secure,
and Cost-Efficient Cloud Storage via Convergent Dispersal,” in 2015
USENIX Annual Technical Conference (USENIX ATC 15), 2015, pp.
111–124.

[38] Z. Xia, N. N. Xiong, A. V. Vasilakos, and X. Sun, “EPCBIR: An
efficient and privacy-preserving content-based image retrieval scheme
in cloud computing,” Information Sciences, vol. 387, pp. 195–204,
2017.

[39] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo, “An efficient
public auditing protocol with novel dynamic structure for cloud data,”
IEEE Transactions on Information Forensics and Security, vol. 12,
no. 10, pp. 2402–2415, 2017.

[40] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “Asleep
at the keyboard? assessing the security of github copilot’s code
contributions,” in 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 2022, pp. 754–768.

[41] H. O. Delicheh and T. Mens, “Mitigating security issues in github
actions,” in Proceedings of the 2024 ACM/IEEE 4th International
Workshop on Engineering and Cybersecurity of Critical Systems
(EnCyCriS) and 2024 IEEE/ACM Second International Workshop on
Software Vulnerability, 2024, pp. 6–11.

[42] A. Cao and B. Dolan-Gavitt, “What the fork? finding and analyzing
malware in github forks,” in Workshop on Measurements, Attacks,
and Defenses for the Web (MADWeb), San Diego, CA, USA, April
2022.

[43] M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git?
characterizing secret leakage in public github repositories.” in NDSS,
2019.

[44] V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye, and S. Mani, “Detecting
and mitigating secret-key leaks in source code repositories,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Reposito-
ries. IEEE, 2015, pp. 396–400.

[45] A. Saha, T. Denning, V. Srikumar, and S. K. Kasera, “Secrets in
source code: Reducing false positives using machine learning,” in
2020 International Conference on COMmunication Systems & NET-
workS (COMSNETS). IEEE, 2020, pp. 168–175.

TABLE 3: Security Property violations across 14 Git plat-
forms.

ID SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10 SP11 Total
1 ✗ 1
2 ✗ ✗ 2
3 0
4 ✗ ✗ 2
5 ✗ 1
6 ✗ ✗ ✗ 3
7 0
8 ✗ ✗ 2
9 ✗ ✗ ✗ 3

10 ✗ ✗ 2
11 ✗ ✗ ✗ ✗ ✗ ✗ 6
12 ✗ ✗ ✗ ✗ 4
13 ✗ 1
14 ✗ ✗ ✗ 3

Total 4 0 3 1 5 1 2 2 4 3 5 30

Appendix A.
Security Property Violations Table

As discussed in Section 6.2, Table 3 provides an
overview of the security property violations observed across
14 different platforms. The table lists 11 security properties
(SP1 through SP11) and marks violations with an "✗" for
each platform ID where a specific security property was vio-
lated. In total, we identified 30 security property violations,
with SP9 and SP11 having the highest number of violations
(five each). This table highlights the widespread security
issues in LFS implementations across various platforms.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

The paper performs a thorough analysis of Git LFS
platforms defining eleven security properties which should
be maintained to ensure security. Using these security prop-
erties, the paper analyzes 14 widely-used Git LFS platforms
identifying 36 vulnerabilities across them.

B.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability

B.3. Reasons for Acceptance

1) The paper identifies an impactful vulnerability across
Git LFS implementations. To do so it presents a thor-
ough and systematic analysis of Git LFS implemen-
tations, defining eleven security properties which are
critical for maintaining security across the service.

2) The paper creates a new tool which can be leveraged
to thoroughly analyze the security properties across
different Git platforms. The authors have evaluated 14
widely-used Git LFS platforms using their tool and
shown multiple vulnerabilities across these platforms.

B.4. Noteworthy Concerns

1) The security properties mostly focus on denial of ser-
vice which does not seem as important as leaking sen-
sitive data. Also, most of the identified vulnerabilities
are related to the DoS category which is less security-
critical than maintaining data integrity and confiden-
tiality.

2) Some reviewers were concerned that the paper focuses
on implementation issues and not design choices in
the platforms, therefore limiting the contribution of the
paper.

Appendix C.
Response to the Meta-Review

The meta-review notes that the security properties dis-
cussed in the paper primarily focus on denial-of-service
(DoS) attacks, which are considered less critical. To clar-
ify, our analysis encompasses a broader range of security

properties, including private file leakage, unauthorized ac-
cess, and integrity violations—issues that are fundamental to
preserving data confidentiality and trust. Notably, we have
discovered multiple real-world vulnerabilities involving file
leakage and unauthorized file replacement, demonstrating
that the impact of our findings extends well beyond DoS-
related concerns.

The meta-review also suggests that the paper emphasizes
implementation flaws rather than platform design choices. In
response, we emphasize that our analysis identifies critical
design-level vulnerabilities in existing Git platforms, partic-
ularly in the areas of access control enforcement and quota
management.

Specifically, the Git LFS specification provides only
minimal guidance for request authentication, leaving access
control models and quota mechanisms to be defined by
individual platforms. Our analysis reveals three core design
flaws:
1) Insufficient Fine-Grained Authorization and In-

tegrity Enforcement. Many Git platforms fail to imple-
ment robust, stage-by-stage access control and integrity
validation in the LFS workflow. Given the multi-user,
multi-repository nature of modern development and the
multi-step handling of LFS objects, security checks must
be applied consistently throughout the process. However,
we find that several platforms rely on coarse-grained
entry-point checks, neglecting to validate user permis-
sions and object integrity across intermediate operations.

2) Overreliance on External Cloud Storage and Im-
plicit Trust. The integration of Git LFS with third-party
cloud storage providers complicates the trust boundary.
In many cases, platforms delegate file uploads via pre-
signed cloud storage URLs, implicitly trusting both the
client and cloud provider to enforce correctness and
integrity. This architectural decision weakens the plat-
form’s control over security-critical operations, espe-
cially when SHA-256 content validation is not supported
by the cloud service.

3) Insecure State Transitions and Workflow Decoupling.
Git LFS platforms frequently exhibit loosely coupled
workflow steps and incomplete mediation. For instance,
the verification of uploaded objects often occurs through
a separate API, which can be skipped, delayed, or ma-
nipulated by an attacker. If platforms allow access to up-
loaded content prior to verification, or if quota account-
ing is deferred and poorly synchronized, this enables
quota evasion and persistent unauthorized access. These
vulnerabilities stem from flawed state management logic,
not merely implementation oversights.
In summary, our work highlights systemic weaknesses in

both the Git LFS specification and the architectural design
of platform implementations. We are actively working to
inform improvements to the LFS specification and to guide
more secure infrastructure designs across Git platforms.

	Introduction
	Background
	LFS Protocol
	Git Platforms
	Motivating Example

	LFS Security Analysis
	Access Control
	File Integrity
	Quota Management

	Threat Model and New Attacks
	Adversarial Capabilities
	New Attacks
	 Private LFS File Leakage
	LFS File Replacement
	Quota-Based Denial of Service Attack
	Quota Escape

	Vulnerability Detection Framework
	Preparation
	Property Checking
	Access Control Check: Read
	Access Control Check: Write
	File Integrity Check
	Quota Increase Check
	Quota Escape Check

	Vulnerability Validation
	LFS File Leakage
	LFS File Replacement
	Quota-based DoS Attack
	Quota Escape

	Real-world Evaluation
	Git Platforms and Supported Features
	Observed Violations of Security Properties
	Uncovered Novel Vulnerabilities
	Case Studies
	Cross-Repository File Overwrite
	Malware Scanning Bypass

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Security Property Violations Table
	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix C: Response to the Meta-Review

