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1 INTRODUCTION

Recent years have witnessed the successful applications of machine learning in many fields, such as computer vision
and natural language processing. Most of the machine learning tasks require large amounts of labeled data, however,
obtaining labeled data from experts is quite expensive and time-consuming. Therefore, crowdsourcing has flourished as
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one of the most important tools for data annotation and labeling. With online platforms such as Amazon Mechanical
Turk (AMT) 1 and CrowdFlower 2, one can get efficient and inexpensive access to crowdsourced resources.

Crowdsourcing systems generally break down a time-consuming task into more manageable microtasks, which can
then be accomplished by distributed workforce independently. For example, to obtain enough labels for training a
classifier, one can break down the labeling task into microtasks by assigning non-overlapping items to different workers
for annotation. However, this way of task assignment suffers from the unprofessional nature of the workers, which
leads to highly noisy data. A common practice is to increase the overlap of assignments between workers, i.e., collecting
multiple labels from different workers for each single item. Then the ground-truth label can be induced from the noisy
crowdsourced labels. By aggregating the wisdom of crowds, one can reduce the error rates and thereby improve the
quality of the labeled data [42].

An intuitive strategy for crowdsourcing label aggregation is majority voting [34]. However, this simple strategy is
deficient for it ignores some important factors, such as worker ability. In a crowdsourcing system, workers usually
show different expertise or reliability within a certain task, and a worker may be acquainted with some sort of tasks but
fail when facing some others. What’s worse is that a malicious worker may even submit wrong answers intentionally.
As a consequence, majority voting, which equally treats each worker, can hardly make a reliable enough inference.

If the exact ability of each worker is known, the ground-truth label can be better inferred by weighted majority
voting [29]. Based on this assumption, Tao et al. managed to learn the weight of each worker for weighted majority
voting [43]. However, we believe that the abilities of workers cannot be simply quantified by a single value. A worker
may have a relatively strong ability in labeling one type of items correctly, but not good at another type of items (e.g.
some workers are familiar with road signs and thus more professional in labeling related items, but they know little
about animals and are easy to make mistakes in distinguishing animals.). Findings from existing work on crowdsourcing
illustrate that it is crucial to model multi-dimensional latent features of workers [10, 43, 54, 55], which indicates different
aspects of the workers. Meanwhile, the latent features of items (in the following, an item to be labeled is also called as a
task) also count for a lot. The difficulty of a task impacts the average rating as well as each worker’s ability. Various
probabilistic models have been proposed under the assumption that worker abilities and task difficulties are both key
factors for inferring true labels [55, 56] and obtained performance superior to majority voting. However, most of them
require a delicate design for a sophisticated generative process and complex inference algorithms, and they are difficult
to be generalized to large-scale datasets. Besides, there are also some deep learning models that jointly learn a classifier
together with the label aggregation model [1, 4, 9, 37]. However, they usually require given features for each task, and
different feature extraction strategies or different model structures of the classifier are needed according to the labeling
tasks. Hence, the necessity of input task features will reduce the applicability of the model to some extent. In contrast,
in this paper we are assumed to know only the task assignments of workers and their labels, and the workers and tasks
are simply identified by ID numbers.

In order to model the relationship between workers and tasks, we propose to apply heterogeneous graph neural
networks to crowdsourced label aggregation. To construct the graph, we model workers and tasks as two different
types of nodes. If a worker and a task is connected by an edge, it indicates that the task was labeled by the worker.
The main idea of graph neural networks is to iteratively aggregate information from their local neighborhoods, thus
the graph neural network can naturally model the mutual interaction between tasks and workers and learn a good

1Amazon Mechanical Turk (AMT) can be found in www.mturk.com
2CrowdFlower can be found in www.crowdflower.com
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representation for them. We then infer the true label of a task from its representation. In this way, the crowdsourcing
label inference problem is turned into a node classification problem in graph neural networks.

Despite the representation power of graph neural networks, in our constructed graphs they can only utilize the
assignment relationship between workers and tasks, while ignoring the workers’ or tasks’ latent relationship. Workers’
correlation has been identified as another important factor for increasing the truth label inference in crowdsourcing [27].
Motivated by this observation, we further take into account the latent worker correlation, as well as task correlation, in
our model and develop a new heterogeneous graph neural network based framework for crowdsourcing. In addition to
the message passing between worker nodes and task nodes, we build an extra layer to implicitly propagate information
among the same type of nodes, which has never been explored by previous heterogeneous graph neural networks to
the best of our knowledge.

Our contributions are summarized as follows:

• We provide a new perspective for crowd label aggregation in the context of graph representation learning. To the
best of our knowledge, it is the first model utilizing graph neural network to solve the crowdsourcing problem.

• Different from existing heterogeneous graph neural networks and most crowd label aggregation methods, our
model learns a latent interaction among the same type of nodes to implicitly integrate the worker correlation
and task correlation.

• We experiment on 13 real-world crowdsourcing datasets and demonstrate advantageous performance over
state-of-the-art models. We also conduct ablation studies to explain the effectiveness of different components.

2 RELATEDWORK

2.1 Crowdsourcing

The increasing popularity of crowdsourcing as a labeling tool has led to a lot of attention to solve the issues of
noisy crowdsourced labels. The early work of label aggregation can be traced back to [10], which firstly proposed
an Expectation-Maximization(EM)-based model to estimate the error rate of patients’ answers to clinical problems.
This model can be naturally transferred to the label aggregation problem. It utilizes workers’ latent aspects by using a
confusion matrix indicating the probability of a worker to choose each label for a task given the true label of it.

Many follow-up studies can be viewed as extensions of the Dawid & Skene model [22, 30, 44, 49, 55, 56, 61]. Some
work introduced task heterogeneity. In [61], the authors incorporated both abilities and difficulties for workers and tasks
respectively and inferred the truth using a min-max entropy principle. Venanzi et al. modeled workers in community
clusters to make workers share similar confusion matrices within the community [49]. Khetan and Oh also introduced
task difficulty into the Dawid & Skene model and designed an adaptive task assignment scheme to provide more budget
for tasks with more difficulty [22]. The GLAD model (Generative model of Labels, Abilities, and Difficulties) considered
both the abilities of workers and the difficulties of tasks and can simultaneously infer true labels as well as worker ability
and task difficulty [55]. LAA (Label-Aware Autoencoders) trains a classifier and a reconstructor, and the truth is inferred
by the classifier as latent features [56]. They also provided two extended models in their paper by considering object
ambiguity (LAA-O) or latent aspects (LAA-L). From the above-mentioned work, we can safely draw a conclusion that
it’s necessary to model the heterogeneity of both workers and tasks. Table 1 compares a few methods in task modeling,
worker modeling and correlation modeling (part of this table is quoted from [59]). Different from previous methods,
EBCC (enhanced Bayesian classifier combination) additionally captures worker-worker correlations by dividing each
true class into several subtypes and modeling the correlations between workers in the subtype level. Their approach

Manuscript submitted to ACM
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infers true labels using a mean-field variational approach [27]. Inspired by this work, our model also incorporates
inner-worker correlation. However, we also model the inner-task correlation in addition.

Other methods have been explored to select workers who can produce high-quality labels. Based on the assumptions
that some workers may assign labels casually (these workers are called spammer), Raykar and Yu defined a spammer
score to rank the workers and proposed an empirical Bayesian algorithm to iteratively eliminate the workers with high
spammer score and estimate the ground-truth labels based only on those with low spammer score [35]. Ipeirotis et al.
tried to evaluate the score of workers before task assignment and only assign tasks to workers with higher scores [20].
CrowdDQS dynamically issues golden standard questions and estimate the accuracies of workers in real-time, then
it can select workers with higher accuracies for task assignment [21]. Tu et al. suggest that the attention of workers
changes over time, thus the accuracy of workers can not be kept constant, therefore, they proposed a probabilistic
model that takes into account workers’ attention [46]. Compared to these models, this paper focuses on a different
scenario and our assumption is that the ability of a worker is diverse but constant (i.e. a worker will always give the
same label to the same task).

Table 1. Comparisons of Existing Methods. "×" indicates the model does not consider this aspect.

Method Task Worker Worker-Worker Corr Task-Task Corr Worker-Task Corr
MV × × × × ×
D&S [10] × ✓ × × ×
ZC [11] × ✓ × × ×
Minimax [61] × ✓ × × ✓
GLAD [55] ✓ ✓ × × ×
BCC [23] × ✓ × × ×
LFC [36] × ✓ × × ×
iBCC-MF [27] × ✓ × × ×
EBCC [27] × ✓ ✓ × ×
LAA [56] ✓ ✓ × × ×
CATD [25] × ✓ × × ×
PM [2, 26] × ✓ × × ×
The proposed ✓ ✓ ✓ ✓ ✓

2.2 Graph Neural Networks and General Frameworks

A graph is a structured data consisting of nodes and edges connecting them. Data in many application scenarios has a
natural graph structure, such as social networks, molecular structures, etc. In these scenarios, traditional deep learning
methods are difficult to apply to the graph data. Therefore, in recent years, there is increasing interest in extending
deep learning algorithms to the field of graphs as Graph Neural Networks (GNNs) [7, 19, 24, 38]. GNNs are capable of
dealing with non-Euclidean structured data such as protein interaction networks [63], citation networks [24], traffic
networks [32], social networks, knowledge graphs [15, 18], device-sharing network [28, 31], and text graph in natural
language processing [6] etc.

Some of these scenarios have various types of entities and relations (i.e. nodes and edges in the graph), hence called
heterogeneous graphs. Several heterogeneous graph neural networks have been proposed and applied to various domains
recently [5, 8, 53, 58]. To illustrate some, Zitnik et al. developed a heterogeneous graph neural network for drug side
effect detection [63]; Fan et al. used heterogeneous graph neural networks for product recommendation [13]; Wang et al.
Manuscript submitted to ACM
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Table 2. Notation and Explanation

Notation Definitions and Description
𝒖𝒊 worker node 𝑖
𝒗𝒋 task node 𝑗
𝑛 number of workers
𝑚 number of tasks
𝑔 𝑗 the label of task 𝑗 inferred using majority voting
𝑙𝑖 𝑗 crowd label given to task 𝑗 by worker 𝑖

𝑒𝑖 𝑗
a one-hot vector indicating the crowd label given
to task 𝑗 by worker 𝑖

N(𝑖) neighborhood of node 𝑖
N(𝒖𝑖 ) the set of tasks labeled by worker 𝒖𝑖
C(𝒗 𝑗 ) the set of workers assigning labels to task 𝒗 𝑗
𝒉𝑡
𝑖

hidden state of worker or task 𝑖
𝒉𝑡 (𝒖𝑖 ) hidden state of worker 𝒖𝒊
𝒉𝑡 (𝒗 𝑗 ) hidden state of task 𝒗𝒋
𝑐𝑖 a constant coefficient
𝑾𝒓 weight parameter used in MP1

𝑾𝒖 ,𝑾𝒗 weight parameters used in MP2
𝑾𝒖

𝒆 ,𝑾
𝒗
𝒆 weight parameters used in MP2

𝑾1,𝑾2 weight parameters used in MP2
𝑏1, 𝑏2 biases used in MP2
𝛼𝑖 𝑗 , 𝛽𝑖 𝑗 attention weights in MP2
𝑾𝒖

𝒄 ,𝑾
𝒗
𝒄 weight parameters used in COR

𝑾3,𝑾4 weight parameters used in COR
𝛾𝑖 𝑗 , 𝛿𝑖 𝑗 attention weights in COR

proposed a heterogeneous graph neural network with hierarchical attention mechanism that aggregates information
from meta-path based neighbors [53]. To the best of our knowledge, our work is the first trial to combine graph neural
networks with the label aggregation problem in crowdsourcing. Moreover, different from previous heterogeneous
graph neural networks, our work is the first one modeling the implicit correlation among the same type of nodes in
a heterogeneous graph.

Some studies on general frameworks for graph neural networks have also emerged [3, 17, 52, 62]. Gilmer et al.
proposed message passing neural network (MPNN) which unified various graph neural network approaches [17]. MPNN
abstracts these graph neural networks into two phases, message passing phase and readout phase. The message passing
phase aggregates information from the neighborhood based on a message function and an update function, and the
readout phase is to obtain a representation of the whole graph based on the hidden states of each node. Our model is
designed under MPNN framework. Wang et al. proposed non-local neural network (NLNN) to capture the non-local
dependencies of nodes [52]. Battaglia et al. unified most of the graph neural networks including MPNN and NLNN by a
graph networks (GN) framework [3].

3 PROBLEM STATEMENT AND NOTATIONS

In this paper, we study the crowdsourcing label aggregation problem. To formulate it, assume we have 𝑛 workers and
𝑚 tasks. The tasks can be classified into 𝐾 categories. For each task, a worker needs to select a single label out of 𝐾

Manuscript submitted to ACM
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candidate labels (we only consider the scenario of single-choice tasks, while a multi-choice task can be transformed
into a set of single-choice tasks [59, 60]). We denote the label that worker 𝑖 assigns to task 𝑗 as 𝑙𝑖 𝑗 ∈ {1, ..., 𝐾}. The goal
of label aggregation in crowdsourcing is to infer the ground-truth label 𝑦 𝑗 of each task 𝑗 . In this work, we assume that
we already have ground-truth labels for some tasks, and the task is to predict the remaining unknown labels for other
tasks. Note that our method is applicable to both the case that each worker only assigns labels to part of the tasks and
the case that each worker assigns labels to all of the tasks.

4 METHOD

In this section, we describe how our method is designed in detail.
We first construct a graph to connect all the workers and tasks as shown in Fig. 1. Then we develop a new het-

erogeneous graph neural network to encode the worker nodes and task nodes into vector representations. Our new
heterogeneous graph neural network contains two types of message passing layers [17]: the layer passing messages
between workers and tasks, which captures the worker-task interactions; and the layer passing message among the
same types of nodes, which captures the worker-worker correlation and task-task correlation. After we get the node
embeddings from the heterogeneous graph neural network, we add a prediction layer to predict the true label of each
task.

u1 u2 u3

v1 v2 v3 v4

Worker

Task

Fig. 1. A worker-task assignment graph and the latent interaction between workers/tasks. 𝒖𝑖 indicates the feature of the 𝑖𝑡ℎ worker,
and 𝒗𝑗 indicates the feature of the 𝑗𝑡ℎ task. Solid lines represent that a worker assigns a label to a task, while dashed lines represent
the latent correlation between workers or between tasks. For simplicity, on the solid-line edges we omit the crowdsourced labels 𝑙𝑖 𝑗
that workers assign to tasks.

4.1 Motivation and Graph Construction

Most previous methods for crowdsourcing formulate the label aggregation process as a complex generative process
that is dependent on either worker ability or task difficulty. For example, in [55],

𝑝 (𝑙𝑖 𝑗 = 𝑧 𝑗 |𝛼𝑖 , 𝛽 𝑗 ) =
1

1 + exp (−𝛼𝑖𝛽 𝑗 )
Manuscript submitted to ACM
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where 𝑙𝑖 𝑗 is the label that worker 𝑖 assigned to task 𝑗 , 𝑧 𝑗 is the ground truth label of task 𝑗 , 𝛼𝑖 denotes the ability
variable of worker 𝑖 , and 𝛽 𝑗 denotes the difficulty variable of task 𝑗 . However, in these models we need to make delicate
assumptions for the priors of these variables (e.g. Dirichlet priors) and carefully design a generative process, in order to
make the inference tractable. In addition, the latent variables are generally scalars. This largely limits the modeling
capacity because the worker’s ability and task’s difficulty may contain different aspects.

Inspired by the recent success of deep learning, we aim at using a deep neural network to explicitly learn the
embeddings of worker features and task features which can determine the true labels. Considering that the labeling
process can be represented as a graph, a graph neural network is a natural solution to the embedding problem.

We show an example of the worker-task assignment graph in Fig. 1. In the graph, the nodes are either workers or
tasks. If a worker 𝒖𝑖 assigns a label to 𝒗 𝑗 , there will be an edge connecting 𝒖𝑖 and 𝒗 𝑗 , and the edge feature is the one-hot
crowdsourced label vector 𝒆𝑖 𝑗 ∈ {0, 1}𝐾 which is derived from the label 𝑙𝑖 𝑗 .

To initialize the features of nodes, we followed the feature representation method in [16]. We denote 𝑔 𝑗 as the label
of the task 𝑢𝑖 inferred by majority voting. For a worker node 𝑢𝑖 , we calculate its features as below:

𝑓 (𝑢𝑖 ) =
|
{
𝑗 ∈ N (𝑢𝑖 ) |𝑙𝑖 𝑗 = 𝑔 𝑗

}
|

|N (𝑢𝑖 ) |
(1)

For a task node 𝑣 𝑗 ,

𝑓 (𝑣 𝑗 ) =
|
{
𝑖 ∈ C(𝑣 𝑗 ) |𝑙𝑖 𝑗 ≠ 𝑔 𝑗

}
|

|C(𝑣 𝑗 ) |
(2)

whereN(𝑢𝑖 ) denotes the set of tasks labeled by worker 𝑢𝑖 and C(𝑣 𝑗 ) is the set of workers that assigned labels to task 𝑣 𝑗 .
| ∗ | denotes the cardinality of a set. This is based on an assumption that if the labels given by a worker is the same as the
majority of people most of the time, he/she should have good labeling ability; for a task, the more worker who assigned
different labels from the majority voting label to it, the more difficult the task can be. We fill the 𝑑-dimentional feature
vector with the same value of 𝑓 (𝑢𝑖 ) for worker 𝑢𝑖 and the same way for tasks. We also tried random initialization, the
results can be found in Table 3.

Table 3. Comparison of Feature Initialization Methods.

Datasets Our Initialization Method Random Initialization
bird 0.8610±0.0508 0.8517±0.0376
flowers 0.8638±0.0133 0.8600±0.0169
web 0.9734±0.0215 0.9284±0.0124
dog 0.8243±0.0088 0.8175±0.0098
rte 0.9269±0.0104 0.9259±0.0103
SP 0.9149±0.0091 0.9044±0.0045
SP* 0.9445±0.0025 0.9425±0.0040
ZCall 0.9076±0.0162 0.9012±0.0184
ZCin 0.7942±0.0071 0.7828±0.0071
ZCus 0.9130±0.0069 0.9034±0.0078
face 0.6635±0.0118 0.6682±0.0126
product 0.9363±0.0019 0.9365±0.0023
sentiment 0.9608±0.0076 0.9560±0.0060

Manuscript submitted to ACM
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4.2 Message Passing Between Workers and Tasks

Given the worker-task assignment graph, we cast the label aggregation problem as a node prediction problem in a
heterogeneous graph neural network. To this aim, we develop a non-linear multi-layer message passing scheme for
the graph node embedding. Message passing has been a key operation for many graph neural networks [17, 63]. The
key idea is to propagate the information across all the edges of the graph in each layer. To illustrate, in the case of the
worker-task graph, a worker’s embedding is obviously impacted by its assigning labels and the corresponding tasks;
and a task’s embedding can also be inferred by the interaction with the workers who assign labels to it. In this paper, we
implement two versions of message passing schemes between workers and tasks, denoted as MP1 and MP2 separately.

4.2.1 MP1. Following RGCN [39], one intuitive idea of message passing to update the hidden states of worker nodes
and task nodes is the following formula, which we call MP1:

𝒉𝑡+1𝑖 = 𝒉𝑡𝑖 +
1

|N (𝑖) |
∑︁

𝑗 ∈N(𝑖)
𝑾𝑟𝒉

𝑡
𝑗 (3)

where N(𝑖) represents the neighborhood of node 𝑖 . When 𝑖 is a task node, N(𝑖) denotes a set of workers that have
assigned labels to it; When 𝑖 is a worker node,N(𝑖) stands for a set of tasks that worker 𝑖 has assigned labels to.𝑾𝑟 is a
matrix parameter for the edge label 𝑙𝑖 𝑗 = 𝑟 . In this way, we pass the message from workers to tasks and from tasks to
workers.

4.2.2 MP2. The above message passing scheme assumes the neighbors have the same weight in the update function.
This may lose importance information of different nodes. We can also employ the attention mechanism to re-weight
the messages and derive another message passing scheme, MP2.

For a worker 𝒖𝑖 with a hidden state 𝒉𝑡 (𝒖𝑖 ), we update 𝒉𝑡 (𝒖𝑖 ) by the following formula:

𝒉𝑡+1 (𝒖𝑖 ) = 𝜙

(
𝑐𝑖𝒉

𝑡 (𝒖𝑖 ) + (1 − 𝑐𝑖 ) (4)∑︁
𝒗𝑗 ∈N(𝒖𝑖 )

𝛼𝑖 𝑗𝑀
𝑢
𝑡 (𝒉𝑡 (𝒖𝑖 ),𝒉𝑡 (𝒗 𝑗 ), 𝒆𝑖 𝑗 )

)
where𝑀𝑢𝑡 is the message function, 𝜙 is a nonlinear activation function (in this work we use ReLU), and 𝑐𝑖 ∈ [0, 1] is a
weight. In our case, the interaction between a worker and a task not only contains the worker/task node features, but
also include the information of the crowdsourced labels. So our message function is calculated by taking into account
both the node and the edge features. We first use a learnable matrix𝑾𝑢

𝑒 to embed the edge vector 𝑒𝑖 𝑗 into an embedding
vector and then concatenate it with the node features. Then we use an attention mechanism to re-weight the messages
from different edges.

𝑀𝑢𝑡 (𝒉𝑡 (𝒖𝑖 ),𝒉𝑡 (𝒗 𝑗 ), 𝒆𝑖 𝑗 ) = 𝜙
(
𝑾𝑢

(
𝒉𝑡 (𝒗 𝑗 ) ⊕ (𝑾𝑢

𝑒 𝒆𝑖 𝑗 )
))

(5)

where𝑾𝑢 is a parameter matrix, 𝛼𝑖 𝑗 is the attention weight calculated by

𝛼𝑖 𝑗 =
exp (𝑾1 (𝑀𝑖 𝑗 ⊕ 𝒉𝑡 (𝒖𝑖 ) + 𝑏1))∑
𝑘 exp (𝑾1 (𝑀𝑖𝑘 ⊕ 𝒉𝑡 (𝒖𝑖 ) + 𝑏1))

(6)

here we simplify𝑀𝑢𝑡 (𝒉𝑡 (𝒖𝑖 ),𝒉𝑡 (𝒗 𝑗 ), 𝒆𝑖 𝑗 ) as𝑀𝑖 𝑗 .
Then we pass the messages from the workers to tasks. Similar to the above message passing phase, for each task 𝒗 𝑗 ,

we also receive the messages from its connected edges and workers:

Manuscript submitted to ACM
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𝑀𝑣
𝑡 (𝒉𝑡 (𝒗 𝑗 ),𝒉𝑡 (𝒖𝑖 ), 𝒆𝑖 𝑗 ) = 𝜙

(
𝑾 𝑣

(
𝒉𝑡 (𝒖𝑖 ) ⊕ (𝑾 𝑣

𝑒 𝒆𝑖 𝑗 )
))

(7)

We use a different matrix𝑾 𝑣
𝑒 for edge embedding, and a different parameter matrix𝑾 𝑣 . The attention weights are

derived similarly by

𝛽 𝑗𝑖 =
exp (𝑾2 (𝑀𝑗𝑖 ⊕ 𝒉𝑡 (𝒗 𝑗 ) + 𝑏2))∑
𝑘 exp (𝑾2 (𝑀𝑗𝑘 ⊕ 𝒉𝑡 (𝒗 𝑗 ) + 𝑏2))

(8)

Here we simplify𝑀𝑣
𝑡 (𝒉𝑡 (𝒗 𝑗 ),𝒉𝑡 (𝒖𝑖 ), 𝒆𝑖 𝑗 ) as𝑀𝑗𝑖 . Aggregating the messages from all the edges, we obtain the updated

task embedding

𝒉𝑡+1 (𝒗 𝑗 ) = 𝜙

(
𝑐𝑖𝒉

𝑡 (𝒗 𝑗 ) + (1 − 𝑐𝑖 ) (9)∑︁
𝒗𝑗 ∈N(𝒖𝑖 )

𝛽 𝑗𝑖𝑀
𝑣
𝑡 (𝒉𝑡 (𝒗 𝑗 ),𝒉𝑡 (𝒖𝑖 ), 𝒆𝑖 𝑗 )

)
4.3 COR: Latent Correlation Between Workers/Tasks

The above message passing layer (either MP1 or MP2) explores the interaction between workers and tasks along the
explicit edges which represent the assignment relationship. In practice, there may be also latent interaction/correlation
among the same type of nodes (i.e. workers or tasks). For example, if two workers belong to the same community [49],
or they are close friends in a social network, they may have highly correlated preference or make similar mistakes in
the labeling process. As to tasks, if their content is similar or they belong to the same category, it is highly possible that
their labels have correlations. However, in a crowdsourcing platform, the explicit relationship among the workers or
the tasks is often unknown. In this work, we develop a new layer to model the implicit inner-worker correlation and
inner-task correlation and integrate the information into our new heterogeneous graph neural network. We denote this
layer as COR.

Implicit worker correlation has been exploited in some Bayesian models before and demonstrated useful [4, 27, 49].
However, it is never explored in previous heterogeneous graph neural networks. Our model is also related to non-local
neural networks [52] and self-attention models [47], which utilize long-range dependency of the inputs and improves
the performance a lot.

Generally, a (heterogeneous) graph neural network requires to know the complete graph structures, i.e. all the edges.
To utilize the correlation between the same type of nodes, we essentially add implicit edges among workers/tasks (based
on some correlation function), as shown in Fig. 1 (dashed lines).

Specifically in our model, for worker nodes, we assume that each node can be implicitly correlated to each of the other
worker nodes. This is based on the assumption that even though two workers are not connected in the worker-task
assignment graph (i.e. the two workers do not assign labels to the same task), they can still have some kind of implicit
correlation between them. But when we are faced with a quite large dataset, we can approximately reduce the number of
neighbor nodes in the correlation layer to accelerate the message passing process. Two simple strategies are suggested,
one is uniform sampling, the other is to select the 2-hop neighborhood in the worker-task assignment graph, i.e. only
to capture the relations between two workers who share at least one task and between two tasks that are assigned to at
least one same worker. Table 4 shows the performance of our final model that using different neighborhood sampling
strategies in the COR layer, both of the strategies have quite close performance to the original fully connected network.
Inspired by [48], we update the worker embeddings as follows:
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Table 4. A comparison between different neighbourhood sampling strategy.

Datasets Fully Connected Uniform Sampling 2-Hop Neighbourhood
bird 0.8610±0.0508 0.8402±0.0306 0.8449±0.0337
flowers 0.8638±0.0133 0.8688±0.0153 0.8638±0.0143
web 0.9734±0.0215 0.9703±0.0272 0.9852±0.0069
dog 0.8243±0.0088 0.8299±0.0101 0.8169±0.0138
rte 0.9269±0.0104 0.9263±0.0068 0.9284±0.0074
SP 0.9149±0.0091 0.9073±0.0081 0.9116±0.0080
SP* 0.9445±0.0025 0.9420±0.0033 0.9425±0.0025
ZCall 0.9076±0.0162 0.9006±0.0088 0.9050±0.0081
ZCin 0.7942±0.0071 0.7852±0.0031 0.7832±0.0096
ZCus 0.9130±0.0069 0.9062±0.0090 0.9022±0.0150
face 0.6635±0.0118 0.6665±0.0226 0.6670±0.0136
product 0.9363±0.0019 0.9354±0.0023 0.9351±0.0014
sentiment 0.9608±0.0076 0.9588±0.0099 0.9583±0.0082

𝒉𝑡+1 (𝒖𝑖 ) = 𝜎
©«
∑︁

𝒖 𝑗 ∈N
𝛾𝑖 𝑗𝑾

𝑢
𝑐 𝒉

𝑡 (𝒖 𝑗 )
ª®¬ (10)

where 𝜎 is a non-linear activation function which is ReLU in our experiment. N denotes the set of all worker nodes
including 𝒖𝑖 .𝑾𝑢

𝑐 represents a parameter matrix. 𝛾𝑖 𝑗 is the attention weight calculated by

𝛾𝑖 𝑗 =

exp
(
𝜎

(
𝒂𝑇

(
𝑾3𝒉𝑡 (𝒖𝑖 ) ⊕𝑾3𝒉𝑡

(
𝒖 𝑗
) ) ))∑

𝒖𝑘 ∈N exp
(
𝜎
(
𝒂𝑇 (𝑾3𝒉𝑡 (𝒖𝑖 ) ⊕𝑾3𝒉𝑡 (𝒖𝑘 ))

) ) (11)

where 𝒂 is a weight vector. We update the embeddings of task nodes in the same way as worker nodes, see the following
equations. In our experiment, we found that only one head attention is enough for our task.

𝒉𝑡+1 (𝒗 𝑗 ) = 𝜎
©«
∑︁
𝒗𝑖 ∈C

𝛿𝑖 𝑗𝑾
𝑣
𝑐 𝒉

𝑡 (𝒗𝑖 )
ª®¬ (12)

𝛿𝑖 𝑗 =

exp
(
𝜎

(
𝒃𝑇

(
𝑾4𝒉𝑡

(
𝒗 𝑗
)
⊕𝑾4𝒉𝑡 (𝒗𝑖 )

) ))∑
𝒗𝑘 ∈C exp

(
𝜎
(
𝒃𝑇

(
𝑾4𝒉𝑡

(
𝒗 𝑗
)
⊕𝑾4𝒉𝑡 (𝒗𝑘 )

) ) ) (13)

We analyze the complexity of our model in terms of each layer. We can split the edges into three categories: worker-
worker, worker-task, task-task. Assume the worker-task edge set is E, since we pass the messages from all these edges in
MP1 layer, the complexity of MP1 layer is 𝑂 ( |E |𝑑𝑡𝑑𝑡+1) where 𝑑𝑡 is the dimension of node embeddings at the 𝑡𝑡ℎ-layer.
The complexity of MP2 layer is 𝑂 ( |E |(𝑑𝑡 + 𝑑𝑒 )𝑑𝑡+1) where 𝑑𝑒 is the dimension of the edge vector. The complexity of
the correlation layer will be 𝑂 ((𝑛2 +𝑚2)𝑑𝑡𝑑𝑡+1). To reduce the complexity, we can use random sampling to sample
only a subset of nodes as neighborhoods, or we can only use 2-hop neighborhoods in the correlation layer. As shown in
table 4, these approximations do not comprise much performance.

4.4 Prediction and Training

In previous sections, we introduced the message passing layer between workers and tasks, and the message passing
layer between the same type of nodes. These layers can be stacked multiple times to get the final embeddings of workers
Manuscript submitted to ACM
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and tasks. Then we can use the final task embeddings to predict their true labels. For a task 𝒗 𝑗 with the final embedding
𝒉(𝒗 𝑗 ), we predict its label by:

�̂� 𝑗 = softmax
(
𝑾3𝒉(𝒗 𝑗 ) + 𝑏3

)
(14)

We use the cross-entropy loss between the prediction �̂� 𝑗 (1 ≤ 𝑗 ≤ 𝑚) and the true labels 𝒚 𝑗 (1 ≤ 𝑗 ≤ 𝑚) as the loss
function,

𝐿 =
∑︁

𝒗𝒋 ∈𝑉𝑡𝑟𝑎𝑖𝑛,1≤𝑘≤𝐾
𝑦 𝑗𝑘 log𝑦 𝑗𝑘 + (1 − 𝑦 𝑗𝑘 ) log(1 − 𝑦 𝑗𝑘 ) (15)

where 𝑦 𝑗𝑘 and 𝑦 𝑗𝑘 are the 𝑘𝑡ℎ elements of 𝒚 𝑗 and �̂� 𝑗 separately. The model is then trained on the training tasks 𝑉𝑡𝑟𝑎𝑖𝑛
with known true labels with Adam and early stopping. The whole algorithm of our model MP2+COR+MP2 (i.e. stacked
by an MP2 layer, a COR layer and another MP2 layer) can be expressed as below:

Algorithm 1MP2+COR+MP2

Input: the worker-task assignment graph𝐺 = (V, E), whereV consists of worker nodesN(𝑢𝑖 ) and task nodes C(𝑣 𝑗 ).
E is the set of edges between worker nodes and task nodes.

Output: the predicted true labels 𝑦 𝑗 of each task nodes 𝑣 𝑗 .
1: Initialize the features of worker nodes ℎ0

𝑖
by Equation (1) and the features of task nodes ℎ0

𝑗
by Equation (2); Initialize

the edge features as the one-hot label vector; t=1;
2: while not converge and 𝑡 < 𝑡𝑚𝑎𝑥 do
3: Update ℎ𝑡

𝑖
by Equation (4) and ℎ𝑡

𝑗
by Equation (9);

4: Update worker features ℎ𝑡
𝑖
by Equation (10), ℎ𝑡

𝑗
by Equation (12);

5: Update ℎ𝑡
𝑖
by Equation (4) and ℎ𝑡

𝑗
by Equation (9);

6: Predict the label 𝑦 for tasks by Equation (14).
7: Obtain the loss by Equation (15) and update model parameters.
8: t = t+1;
9: end while

5 EXPERIMENT

5.1 Datasets

We ran our experiment on 13 widely-used real-world datasets. These datasets are from four crowdsourcing dataset
collections. Among them, bird, dog, rte and web are from [57] 3, flowers is obtained from [45] 4, SP, SP*, ZCall, ZCin
and ZCus are from [50] 5, face, product and sentiment are from [59] 6. Among them, ten datasets are binary tasks
including bird to determine whether an image contains any bird [54], flowers to distinguish whether the flower in
an image is peach flower [45], rte to recognize textual entailment [41], SP and SP* to perform sentiment analysis for
movie reviews [50], ZCall, ZCin, and ZCus to judge whether a URI is relevant to a named entity extracted from news
[50], product to tell whether two products are the same given their descriptions [51], sentiment to perform sentiment
analysis for companies mentioned in tweets [59]. There are also three multi-class tasks include web judging the relevance
of web search results [61], dog determining the breed of a dog from ImageNet [12], and face distinguishing the facial
expressions [33].

3https://github.com/zhangyuc/SpectralMethodsMeetEM
4https://github.com/coverdark/deep_laa
5https://github.com/orchidproject/active-crowd-toolkit
6https://zhydhkcws.github.io/crowd_truth_inference/index.html
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Table 5. Datasets statistics

Dataset #Tasks #Workers #Categories #Labels
bird 108 39 2 4,212
flowers 200 36 2 2,366
web 2,653 177 5 15,539
dog 807 109 4 8,070
rte 800 164 2 8,000
SP 4,999 203 2 27,746
SP* 500 143 2 10,000
ZCall 2,040 78 2 20,125
ZCin 2,040 25 2 10,495
ZCus 2,040 74 2 11,155
face 584 27 4 5,242
product 8,315 176 2 24,945
sentiment 1,000 85 2 20,000

The statistics of datasets are shown in Table 5, these datasets vary considerably in the number of tasks (from 108 to
8,315) and labels (from 2,366 to 27,746). The results of our experiments suggest that our method is adaptive to different
scales of datasets. Our model has proven its capability of handling multi-label crowdsourcing problem by superior
performance on these datasets. See Table 6.

5.2 Baselines

We use these following methods for comparison:

• MV: the MV is an abbreviation of majority voting, it is a basic model, which considers workers equally and
selects the label that received most votes from workers as the true label.

• GLAD: the GLAD is an abbreviation of Generative model of Labels, Abilities, and Difficulties. This a probabilistic
model that jointly infers the true label of each task, the expertise of workers, and the difficulty of tasks [55].

• MLP: a three-layer MLP (Multi-Layer Perception) trained in a similar way as our method.
• iBCC-MF: Bayesian Classifier Combination (BCC) was proposed by [23] for ensemble learning purpose. BCC has
several variants, iBCC-MF is a mean-field variational inference implementation of independent BCC (iBCC) [14,
27, 40] and performs slightly better than iBCC [27]. Hence we include iBCC-MF as a baseline.

• EBCC: an enhanced Bayesian classifier combination model proposed by Li et al. [27]. This method models worker
reliability at a subtype level, where each class is considered as a mixture of subtypes and worker performance at
per subtype induces inter-worker correlations.

5.3 Implementation Details

Our model7 is implemented based on Pytorch8 and Deep Graph Library (DGL)9. We perform cross-validation to evaluate
the performance of each model. Each dataset is separated into 𝑛 splits. We use one split for training and the rest for
testing, and obtain the mean accuracy as the evaluation result. 𝑛 is set to 5, 10, and 20. Note that we randomly split the
datasets and fix the splits afterward when evaluating all methods for a fair comparison.

7https://github.com/whl97/Crowdsourcing_Label_Inference
8https://pytorch.org
9http://dgl.ai
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Table 6. Accuracy comparison on 5-fold cross validation.

Dataset MV GLAD MLP iBCC-MF EBCC MP2+COR+MP2
bird 0.7592 ±0.0235 0.7593 ±0.0149 0.9074±0.0218 0.8889 ±0.0177 0.8610±0.0225 0.8610±0.0508
flowers 0.7600±0.0114 0.7950±0.0120 0.8213±0.0264 0.8700±0.0149 0.7200±0.0093 0.8638±0.0133
web 0.7765±0.0030 0.7252±0.0025 0.7982±0.0088 0.7508±0.0033 0.7437± 0.0045 0.9734±0.0215
dog 0.8178± 0.0052 0.8092±0.0054 0.6366±0.0117 0.8389±0.0050 0.8401±0.0057 0.8243±0.0088
rte 0.9188±0.0053 0.9050±0.0060 0.8463±0.0248 0.9275±0.0053 0.9313±0.0048 0.9269±0.0104
SP 0.8896±0.0018 0.8872±0.0013 0.8833±0.0114 0.9150±0.0019 0.9152±0.0017 0.9149±0.0091
SP* 0.9440±0.0034 0.9360±0.0034 0.9300±0.0132 0.9440±0.0034 0.9460±0.0022 0.9445±0.0025
ZCall 0.8348±0.0069 0.8294±0.0042 0.7936±0.0610 0.7951±0.0032 0.8632±0.0039 0.9076±0.0162
ZCin 0.7441±0.0013 0.7304±0.0020 0.7933±0.0154 0.7696±0.0034 0.7784±0.0039 0.7942±0.0071
ZCus 0.8696±0.0038 0.8221±0.0019 0.7830±0.0596 0.8270±0.0005 0.9123±0.0023 0.9130±0.0069
face 0.6301±0.0102 0.6336±0.0086 0.6015±0.0156 0.6404±0.0082 0.6336±0.0062 0.6635±0.0118
product 0.8966±0.0020 0.9040±0.0016 0.8784±0.0017 0.9383±0.0012 0.9349±0.0016 0.9363±0.0019
sentiment 0.9320±0.0038 0.9510±0.0046 0.9517±0.0048 0.9600±0.0055 0.9610±0.0045 0.9608±0.0076

5.4 Results

We compare our method with the aforementioned baselines on different real-world datasets. Table 6 compares the
accuracy on different datasets under the 5-fold cross validation settings. The results demonstrate that our method out-
performs others in most of the datasets. Due to the various natures of different datasets, it is hard for one crowdsourcing
model to beat all others on all datasets (as shown in previous papers [27]). Among all 13 datasets, our method achieves
the best accuracy on 5 datasets and is also comparable to the best performance on the other 8 datasets. The result on
the dataset web is extremely remarkable, probably due to its good graph structure. When looking into detailed statistics
of datasets, we notice that there are 7 datasets that have no less than 1000 tasks while other datasets are relatively small.
Among the 7 larger datasets, our method achieves the highest accuracy on 4 of them and is less than 0.2% worse than
the best on the other 3 datasets. From another perspective, among 5 datasets on which we obtained the best results, 4
datasets are relatively larger. This suggests that our method is more superior on large datasets.

EBCC, another model with worker correlation in consideration, achieves the best results on 5 datasets (dog, rte, SP,
SP*, and sentiment). Compared to EBCC, our method uses a different methodology from deep learning and graph
neural networks, and achieves much more stable results across all datasets. Specifically, our model obtains the same
accuracy on bird, and is better on 7 datasets (flowers, web, ZCall , ZCin , ZCus, face, product, and only slightly
inferior on 5 datasets (dog, rte, SP, SP* and sentiment).

It is worth noting that the MLP method has the same setting as our method, but the results are much worse than
ours. That may be explained by the advantage of iterative message passing between workers and tasks in graph neural
networks. Another reason may be that MLP can only utilize information from those tasks with ground truth during the
training phase. Other tasks without ground-truth labels, however, have a lot of hidden information as well. Our method,
as a semi-supervised graph neural network, is trained on the whole worker-task assignment graph, thus we can fully
capture the hidden states of all tasks and workers and the structural information among them.

5.5 Ablation Studies

We study the effect of model components by comparing the prediction accuracy of different ablation models. Comparison
of MP1, MP2 and their variants are shown in Table 7. MP𝑛 (𝑛 = 1, 2) denotes a single message passing layer, MP𝑛+MP𝑛
indicates that we stack two message passing layers, MP𝑛+COR+MP𝑛 means that we put a latent correlation layer
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between two message passing layers. The results show that on most of the datasets MP𝑛+COR+MP𝑛 almost constantly
outperforms MP𝑛+MP𝑛 as well as the single layer MP𝑛, regardless the selection of message passing method MP𝑛. This
demonstrates the effectiveness of capturing inter-worker and inter-task latent correlations. The COR layer brings in
possible dependency between distant nodes, which the 2-hop model (MP𝑛+MP𝑛) cannot provide.

Table 7. Prediction accuracy of different ablation model on 5-fold cross validation.

Dataset MP1 MP1+MP1 MP1+COR+MP1 MP2 MP2+MP2 MP2+COR+MP2
bird 0.8472±0.0312 0.8219±0.0563 0.8658±0.0355 0.8841±0.0218 0.8609±0.0174 0.8610±0.0508
flowers 0.8163±0.0140 0.8287±0.0191 0.8438±0.0288 0.8475±0.0230 0.8575±0.0163 0.8638±0.0133
web 0.8585±0.0076 0.8606±0.0062 0.9428±0.0232 0.9509±0.0065 0.9710±0.0056 0.9734±0.0215
dog 0.8324±0.0077 0.8271±0.0069 0.8278±0.0074 0.8206±0.0161 0.8042±0.0146 0.8243±0.0088
rte 0.9256±0.0062 0.9256±0.0085 0.9272±0.0099 0.9284±0.0050 0.9269±0.0072 0.9269±0.0104
SP 0.8971±0.0037 0.9019±0.0059 0.9113±0.0032 0.9130±0.0026 0.9138±0.0032 0.9149±0.0091
SP* 0.9455±0.0052 0.9440±0.0057 0.9435±0.0021 0.9425±0.0029 0.9420±0.0021 0.9445±0.0025
ZCall 0.8456±0.0093 0.8513±0.0078 0.8739±0.0062 0.8989±0.0042 0.9083±0.0034 0.9076±0.0162
ZCin 0.7828±0.0071 0.7828±0.0071 0.7828±0.0071 0.7875±0.0023 0.7904±0.0059 0.7942±0.0071
ZCus 0.8757±0.0085 0.8795±0.0042 0.8819±0.0076 0.8968±0.0047 0.9062±0.0057 0.9130±0.0069
face 0.6678±0.0127 0.6712±0.0151 0.6742±0.0182 0.6675±0.0102 0.6618±0.0205 0.6635±0.0118
product 0.9232±0.0009 0.9295±0.0020 0.9314±0.0015 0.9336±0.0026 0.9338±0.0024 0.9363±0.0019
sentiment 0.9535±0.0067 0.9500±0.0091 0.9530±0.0095 0.9563±0.0059 0.9545±0.0084 0.9608±0.0076

Fig. 2. Effect of different dimensions of hidden representations. We display the accuracies of our final model (MP2-COR-MP2) on two
datasets, web and sentiment, along the change of dimensionality.

5.6 Effect of Dimensionality

We also study the impact of the dimensions of hidden representations. We experiment on the proposed MP2+COR+MP2
model. As shown in Fig. 2, the best dimension for each dataset to obtain the highest accuracy are not always the same.
When faced with a new dataset, it is difficult for us to know the best dimension. Thus we fix this hyperparameter to 30
for all datasets to present the final results.
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Fig. 3. Effect of training proportion on different datasets. Each subgraph shows the accuracies of our final model (MP2-COR-MP2) on
different datasets along the change of training proportion (5%, 10%, and 20%).

5.7 Effect of Training Proportion

To study the effect of different training proportions, Fig. 3 demonstrates how the performance of our model varies with
the training proportion on each dataset. On all datasets, the accuracy increases as the training proportion becomes
larger. But the trends of some datasets are barely noticeable, which indicates that on these datasets our method can
achieve quite good performance with very little training data (e.g. 5%). Some other datasets increase obviously with the
proportion of training data, we find that our model can fully utilize the training data and achieve quite remarkable
performance compared to other methods (e.g. on web and ZCall).

6 CONCLUSION AND FUTUREWORK

We present a novel Heterogeneous Graph Neural Network for label aggregation in crowdsourcing. Constructing a graph
to represent the worker-task interactions, we utilize the power of graph neural networks to learn a better representation
for workers and tasks. Moreover, our heterogeneous graph neural network differs from previous works by adding new
latent correlations among the same type of nodes (i.e. worker nodes and task nodes), which captures the worker-worker
and task-task correlation in the crowdsourcing problem. Comparing with state-of-the-art label aggregation models and
our own ablation models, we demonstrated the effectiveness of heterogeneous graph neural networks on real-world
crowdsourcing datasets, as well as the usefulness of modeling the latent correlation of workers/tasks. Future work
includes exploring the generative models for crowdsourcing graphs and extends our model to the unsupervised setting
(without the requirement of ground-truth labels).
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