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Abstract—Trusted Execution Environments (TEEs) embedded
in IoT devices provide a deployable solution to secure IoT
applications at the hardware level. By design, in TEEs, the
Trusted Operating System (Trusted OS) is the primary compo-
nent to enable the TEE to use security-based design techniques,
such as data encryption and identity authentication. Once a
Trusted OS has been exploited, the TEE can no longer ensure
security. However, Trusted OSes for IoT devices have received
little security analysis, which is challenging from several per-
spectives: (1) Trusted OS implementations are closed-source
and have an unfavorable environment for sending test cases
and collecting feedback. (2) Trusted OS implementations have
complex data structures and require a stateful workflow, which
limits existing vulnerability detection tools.

To address the challenges, we present SYZTRUST, the
first state-aware fuzzing framework for vetting the security of
resource-limited Trusted OSes. SYZTRUST adopts a hardware-
assisted framework to enable fuzzing Trusted OSes directly on
the IoT devices as well as non-invasively tracking state and code
coverage. Additionally, SYZTRUST utilizes composite feedback
to guide the fuzzer to effectively explore more states as well
as to increase the code coverage. We evaluate SYZTRUST
on the Trusted OSes from three major vendors: Samsung,
Tsinglink Cloud, and Ali Cloud. These systems run on Cortex
M23/33 MCUs, which provide the necessary abstraction for
embedded TEEs. As a result, we have found 70 previously un-
known vulnerabilities in their Trusted OSes, receiving 10 new
CVEs. Furthermore, compared to the baseline, SYZTRUST has
demonstrated significant improvements, including 66% higher
code coverage, 651% higher state coverage, and 31% improved
vulnerability-finding capability. We report all discovered new
vulnerabilities to vendors and open source SYZTRUST.

1. Introduction

Trusted Execution Environments (TEEs) are essential
to securing important data and operations in IoT devices.
The leading technical standards organization GlobalPlatform
has reported a 25-percent increase in the number of TEE-
enabled IoT processors being shipped quarterly, year-over-
year [1]. Recently, major IoT vendors such as Samsung have
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designed TEEs for low-end Microcontroller Units (MCUs)
[2], [3], [4] and device manufacturers have embedded the
TEE in IoT devices such as unmanned aerial vehicles and
smart locks, to protect sensitive data and to provide key
management services. A TEE is composed of Client Ap-
plications (CAs), Trusted Applications (TAs), and a Trusted
Operating System (Trusted OS). Among them, the Trusted
OS is the primary component to enable the TEE using
security-based design techniques, and its security is the
underlying premise of a reliable TEE where the code and
data are protected in terms of confidentiality and integrity.
Unfortunately, implementation flaws in Trusted OSes violate
the protection guarantees, bypassing confidentiality and in-
tegrity guarantees. These flaws lead to critical consequences,
including sensitive information leakage (CVE-2019-25052)
and code execution within the Trusted OS context [5],
[6]. Once attackers gain control of Trusted OSes, they can
launch critical attacks, such as creating a backdoor to the
Linux kernel [7], and extracting full disk encryption keys of
Android’s KeyMaster service [8].

While increasingly TEEs are embedded in IoT devices,
the security of Trusted OS for IoT devices remains un-
der study. Considering the emerging amount of diversified
MCUs and IoT devices, manual analysis, such as reverse
engineering, that requires significant expert efforts is infea-
sible. Recent academic works use fuzzing to automate the
TEE testing approach. However, unlike Trusted OSes for
Android devices, Trusted OSes for IoT devices are built
on TrustZone-M with low-power and cost-sensitive MCUs,
including NuMicro M23. Thus, Trusted OSes for IoT de-
vices are more hardware-dependent and resource-constraint,
complicating the development of scalable and usable testing
approaches with different challenges. In the following, we
conclude two challenges for fuzzing IoT Trusted OSes.
Challenge I: The inability of instrumentation and re-
stricted environment. Most Trusted OSes are closed-
source. Additionally, TEE implementations, especially the
Trusted OSes are often encrypted by the IoT vendors, which
implies the inability to instrument and monitor the code ex-
ecution in the secure world. Accordingly, classic feedback-
driven fuzzing cannot be directly applied to the scenario
of testing TEEs including TAs and Trusted OSes. Existing
works either rely on on-device binary instrumentations [9]
or require professional domain knowledge and rehosting
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through proprietary firmware emulation [10] to enable test-
ing and coverage tracking. However, as for the Trusted OSes
designed for IoT devices, the situation is more critical due
to the following two reasons. First, IoT devices are severely
resource-limited, while the existing binary instrumentations
are heavy for them and considerably limit their execution
speed. Second, as for rehosting, IoT devices are mostly
hardware-dependent, making the reverse engineering and
implementation effort for emulated software and hardware
components unacceptable. In addition, rehosting also faces
the limitation of the inaccuracy of modeling the hardware
components’ behaviors. To our best knowledge, the only
existing TEE rehosting solution PartEmu [10] does not
support the mainstream TEE based on Cortex-M MCUs
designed for IoT devices and is not publicly available.
Challenge II: Complex structure and stateful work-
flow. Trusted OSes for IoT devices are surprisingly com-
plex. Specifically, Trusted OSes implement multiple cryp-
tographic algorithms, such as AES and MAC, without un-
derlying hardware support for these algorithms as would
be present on Cortex-A processors. To implement these
algorithms in a highly secure way, Trusted OSes maintain
several state diagrams to store the execution contexts and
guide the execution workflow. To explore more states of
a Trusted OS, a fuzzer needs to feed syscall sequences in
several specific orders with different specific state-related
argument values. Without considering such statefulness of
Trusted OSes, coverage-based fuzzers are unlikely to ex-
plore further states, causing the executions to miss the
vulnerabilities hidden in a deep state. Unfortunately, existing
fuzzing techniques hardly tackle the statefulness of OSes.
Specifically, they have trouble understanding which state
a Trusted OS reaches since there are no rich-semantics
response codes to indicate it. In addition, due to the lack of
source code and the inability of instrumentation, it is hard
to infer and extract the state variables by program analysis.
Our solution. To address the above key challenges, we pro-
pose and implement SYZTRUST, the first fuzzing framework
targeting Trusted OSes for IoT devices, supporting state and
coverage-guided fuzzing. Specifically, we propose an on-
device fuzzing framework and leverage a hardware-in-the-
loop approach. To support in-depth vulnerability detection,
we propose a composite feedback mechanism that guides the
fuzzer to explore more states and increase code coverage.

SYZTRUST necessitates diverse contributions. First, to
tackle Challenge I, we propose a hardware-assisted fuzzing
framework to execute test cases as well as collect code
coverage feedback. Specifically, we decouple the execution
engine from the rest of the fuzzer to enable directly exe-
cuting test cases in the protective TEE secure world on the
resource-limited MCU. To support coverage tracking, we
present a selective trace collection approach instead of costly
code instrumentation to enable tracing instructions on a
target MCU. In particular, we leverage the ARM Embedded
Trace Macrocell (ETM) feature to collect raw trace packets
by monitoring instruction and data buses on MCU with
a low-performance impact. However, the Trusted OS for
IoT devices is resource constrained, which makes storing

ETM traces on board difficult and limits the fuzzing speed.
Additionally, the TEE internals are complicated and have
multiple components, which generate noisy trace packets.
Therefore, we offload heavy-weight tasks to a PC and care-
fully scheduled the fuzzing subprocesses in a more parallel
way. We also present an event- and address-based trace filter
to handle the noisy trace packets that are not executed by
the Trusted OS. Additionally, we adopt an efficient code
coverage calculation algorithm directly on the raw packets.

Second, as for the Challenge II, the vulnerability detec-
tion capability of coverage-based fuzzers is limited, and a
more effective fuzzing strategy is required. To handle it, we
propose a composite feedback mechanism, which enhances
code coverage with state feedback. To be specific, we utilize
state variables that control the execution contexts to present
the states of a Trusted OS. However, such state variables
are usually stored in closed-source and customized data
structures from IoT Trusted OSes. Existing state variable
inference methods either use explicit protocol packet se-
quences [11] or require source codes of target software [12],
[13], which are unavailable for Trusted OSes. Therefore, to
identify the state-related members from those complex data
structures, SYZTRUST concludes some insights for Trusted
OS and utilizes them to perform an active state variable
inference algorithm. After that, SYZTRUST monitors the
state variable values during the fuzzing procedure as the
state feedback.

Finally, SYZTRUST is the first end-to-end solution ca-
pable of fuzzing Trusted OSes for IoT devices. Moreover,
the design of the on-device fuzzing framework and modular
implementation make SYZTRUST more extensible. With
several MCU-specific configurations, SYZTRUST scalables
to Trusted OSes on different MCUs from different vendors.
Evaluation. We evaluate SYZTRUST on real-world Trusted
OSes from three leading IoT vendors Samsung, Tsinglink
Cloud, and Ali Cloud. The evaluation result shows that
SYZTRUST is effective at discovering new vulnerabilities
and exploring new states and codes. As a result, SYZTRUST
has discovered 70 new vulnerabilities. Among them, vendors
confirmed 28, and assigned 10 CVE IDs. The vendors
are still investigating others. Compared to state-of-the-art
approaches, SYZTRUST finds more vulnerabilities, hits 66%
higher code branches, and 651% higher state coverage.
Summary and contributions. In summary, our contribu-
tions are as follows.
• We propose SYZTRUST, the first fuzzing framework

targeting Trusted OSes for IoT devices, supporting effective
state and code coverage guided fuzzing. With a carefully
designed hardware-assisted fuzzing framework and a com-
posite feedback mechanism, SYZTRUST is extensible and
configurable to different IoT devices.
• With SYZTRUST, we evaluate three popular Trusted

OSes on three leading IoT vendors and detect several
previously unknown bugs. We have responsibly reported
these vulnerabilities to the vendors and got acknowledged
from vendors such as Samsung. We release SYZTRUST
as an open-source tool for facilitating further studies at
https://github.com/SyzTrust.
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Figure 1: Structure of TrustZone-M based TEE.

2. Background

2.1. TEE and Trusted OS

A TEE is a secure enclave on a device’s main processor
that is separated from the main OS. It ensures the confiden-
tiality and integrity of code and data loaded inside it [14].
For standardizing the TEE implementations, GlobalPlatform
(GP) has developed a number of specifications. For instance,
it specifies the TEE Internal Core API implemented in the
Trusted OS to enable a TA to perform its security functions
[15]. However, it is difficult for vendors to implement a
Trusted OS correctly since there are lots of APIs with
complex and stateful functions defined in the GP TEE spec-
ifications. For instance, the TEE Internal Core API defines
six types of APIs, including cryptographic operations APIs
supporting more than 20 complex cryptographic algorithms.
In addition, the TEE Internal Core API also requires that a
Trusted OS shall implement state diagrams to manage the
operation. The two aforementioned factors make it challeng-
ing for device vendors to develop a secure Trusted OS.

ARM TrustZone has become the de-facto hardware tech-
nology to implement TEEs in mobile environments [16] and
has been deployed in servers [17], low-end IoT devices [18],
[19], and industrial control systems [20]. For IoT devices,
the Cortex-M23/33 MCUs, introduced by the ARM Commu-
nity in 2016, are built on new TrustZone for ARMv8-M as
security foundations for billions of devices [21]. TrustZone
for ARMv8-M Cortex-M has been optimized for faster con-
text switch and low-power applications and is designed from
the ground up instead of being reused from Cortex-A [22].
As Figure 1 shows, instead of utilizing a secure monitor
in TrustZone for Cortex-A, the division of the secure and
normal world is memory-based, and transitions take place
automatically in the exception handle mode. Based on the
TrustZone-M, IoT vendors provide Trusted OS binaries to
the device manufacturers and then the device manufacturers
produce devices with device-specific TAs for the end users.
This paper focuses on the Trusted OSes from different IoT
vendors and provides security insights for device manufac-
turers and end users.

2.2. Debug Probe

A debug probe is a special hardware device for low-
level control of ARM-based MCUs, using DAP (Debug
Access Port) provided by the ARM CoreSight Architecture
[23]. It bridges the connection between a computer and an
MCU and provides full debugging functionality, including
watchpoints, flash memory breakpoints, memory, as well as
register examination or editing. In addition, a debug probe
can record data and instruction accesses at runtime through
the ARM ETM feature. ETM is a subsystem of ARM
Coresight Architecture and allows for traceability, whose
function is similar to Intel PT. The ETM generates trace
elements for executed signpost instructions that enable
reconstruction of all the executed instructions. Utilizing the
above features, the debug probe has shown its effectiveness
in tracing and debugging malware [24], unpacking Android
apps [25], or fuzzing Linux peripheral drivers [26].

3. Threat Model

Our attacker tries to achieve multiple goals: gaining
control over, extracting confidential information from, and
causing crashes in other Trusted Applications (TAs) hosted
on the same Trusted OS or the Trusted OS itself. We
consider two practical attack scenarios. First, an attacker can
exploit our discovered vulnerabilities by executing carefully
crafted data in a TA. They can utilize a malicious Client
Application (CA) to pass the crafted data to a TA. For
instance, in mTower, CVE-2022-38511 (ID 1 in Table 1)
can be triggered by passing a large key size value from a
CA to a TA. Second, an attacker can exploit our discovered
vulnerabilities by injecting a malicious TA into the secure
world. They can do this through rollback attacks or electro-
magnetic fault injections (CVE-2022-47549).

4. Design

Figure 2 gives an overview of SYZTRUST’s design.
SYZTRUST includes two modules: the fuzzing engine on the
Personal Computer (PC) and the execution engine on the
MCU. The fuzzing engine generates and sends test cases
to the MCU via the debug probe. The execution engine
executes the received test case on the target Trusted OS.

At a high level, we propose a hardware-assisted fuzzing
framework and a composite feedback mechanism to guide
the fuzzer. Given the inaccessible environment of Trusted
OSes, we design a TA and CA pair as a proxy to the
Trusted OS and utilize a debug probe to access the MCU for
feedback collection. To handle the challange of limited re-
sources, we decouple the execution engine from SYZTRUST
and only run it on the MCU. This allows SYZTRUST,
with its resource-demanding core components, to run more
efficiently on a PC. To handle the statefulness of Trusted
OSes, we include state feedback with code coverage in the
composite feedback. State variables represent internal states,
and our inference method identifies them in closed-source
Trusted OSes.
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Figure 2: Overview of SYZTRUST. SYZTRUST consists of a fuzzing engine running on a PC, an execution engine running
on an MCU, and a debug probe to bridge the fuzzing engine and the execution engine.

The main workflow is as follows. First, SYZTRUST
accepts two inputs, including initial seeds and syscall tem-
plates. Second, the manager generates test cases through
two fuzzing tasks, including generating a new test case
from scratch based on syscall templates or by mutating a
selected seed. Then, the generated test cases are delivered
to the execution engine on MCU through the debug probe.
The execution engine executes these test cases to test the
Trusted OS. Meanwhile, the debug probe selectively records
the executed instruction trace, which is processed to be
an alternative to the code coverage by the trace collector.
Additionally, the state variable monitor tracks the values of
a set of target state variables to calculate state coverage via
the debug probe. Finally, the code and state coverage is fed
to the manager as composite feedback to guide the fuzzer.
The above procedures are iteratively executed and we denote
the iterative workflow as the fuzzing loop.

4.1. Inputs

Syscall templates and initial seeds are fed to SYZTRUST.
Syscall templates. Provided syscall templates,

SYZTRUST is more likely to generate valid test cases
by following the format defined by the templates. Syscall
templates define the syscalls with their argument types
as well as special types that provide the semantics of an
argument. For instance, resources represent the values
that need to be passed from an output of one syscall
to an input of another syscall, which refers to the data
dependency between syscalls. We manually write syscall
templates for the Internal Core API for the GP TEE in
Syzlang (SYZKALLER’s syscall description language [27]).
However, a value with a complex structure type, which is
common in Trusted OSes, cannot be used as a resource
value due to the design limitation of Syzlang. To handle
this limitation, we extend the syscall templates with help
syscalls, which accept values of complex structures and
output their point addresses as resource values. In total,
we have 37 syscall templates and 8 help syscalls, covering
all the standard cryptographic APIs.

Initial seeds. Since syscall templates are used to gen-
erate syntactically valid inputs, SYZTRUST requires initial
seeds to collect some valid syscall sequences and argu-
ments and speed up the fuzzing procedure. Provided initial
seeds, SYZTRUST continuously generates test cases to test

a target Trusted OS by mutating them. However, there is
no off-the-shelf seed corpus for testing Trusted OSes, and
constructing one is not trivial, as the syscall sequences
with arguments should follow critical crypto constraints,
and manually constructing valid sequences will need much
effort. For example, a valid seed includes a certain order
of syscall sequences to initiate an encryption operation, and
the key and the encryption mode should be consistent with
supporting encryption. Fortunately, OP-TEE [28], an open-
source TEE implementation for Cortex-A, offers a test suite,
which can be utilized to construct seeds for most Trusted
OSes. Specifically, we automatically inject codes in TAs
provided by the test suite to log the syscall names and
their arguments. Then we automatically convert those logs
into seeds following the format required by SYZTRUST. In
addition, we automatically add data dependencies between
syscalls in the seed corpus. Accordingly, we identify the
return values from syscalls that are input arguments of other
syscalls and add help syscalls for the identified values.

Although the syscall template and seed corpus construc-
tion require extra work, it is a one-shot effort and can be
used in the further study of Trusted OS security.

4.2. A Hardware-assisted Framework

Now our hardware-assisted fuzzing framework enables
the generated test cases to be executed in protective and
resource-constrained trusted environments on IoT devices.
To handle the constraint resources in Challenge I, we de-
couple the execution engine from the other components of
SYZTRUST to ease the execution overhead of the MCU.
As shown in Figure 2, the fuzzing engine, which includes
most core components of SYZTRUST and requires more
computing resources and memory space, runs on a PC,
while only the execution engine runs on the MCU. Thus,
SYZTRUST does the heavy tasks, including seed preserva-
tion, seed selection, type-aware generation, and mutation.

As for the protected execution environment in Challenge
I, we design a pair of CA and TA as the execution engine
that executes the test cases to test the Trusted OSes. We
utilize a debug probe to bridge the connection between the
fuzzing engine and the execution engine. In the following,
we introduce the design of delivering test cases and the pair
of CA and TA. First, as shown in Figure 2, the debug probe
transfers test cases and feedback between the fuzzing engine
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and the execution engine. Specifically, a debug probe can
directly access the memory of the target MCU. Thus, the
debug probe accepts generated test cases from the manager
engine and writes them to a specific memory of the target
MCU. As for test case transportation, we design a serializer
to encode the test cases into minimum binary data denoted
as payloads before sending them to the MCU. A payload
includes a sequence of syscalls with their syscall names,
syscall argument types, and syscall argument values. In ad-
dition, SYZTRUST denotes syscall names as ordinal numbers
to minimize the transportation overhead. Second, the pair of
CA and TA plays the role of a proxy to handle the test cases.
Accordingly, the CA monitors the specific memory in the
MCU. If a payload is written, the CA reads the binary data
from the specific memory and delivers them to the TA. Then
the TA deserializes the received binary data and executes
them one by one to test a Trusted OS implementation.
Accordingly, the TA invokes specific syscalls according
to the ordinal numbers and fills them in with arguments
extracted from the payload. To this end, the TA hardcodes
the syscalls declaration codes that are manually prepared.
The manual work to prepare the declaration codes is a one-
shot effort that can be easily done by referring to the GP
TEE Internal Core API specification.

4.3. Selective Instruction Trace Tracking

This section introduces how to obtain the code coverage
feedback in SYZTRUST when testing the Trusted OSes.
To handle the inability of instrumentation in Challenge
I, we present a selective instruction trace track, which is
implemented in the trace collector in the fuzzing engine.
The trace collector controls the debug probe to collect traces
synchronously when the test cases are being executed. After
completing a test case, it calculates the code coverage and
delivers it to the manager as feedback.

In the selective instruction trace track, we utilize the
ETM component to enable non-invasively monitoring of
the execution context of target Trusted OSes. The overall
workflow is as follows. (1) Before each payload is sent to
the MCU, the hardware-assisted controller resets the target
MCU via the debug probe. (2) Once the execution engine
reads a valid payload from the specific memory space and
starts to execute it, the hardware-assisted controller starts
the ETM component to record the instruction trace for each
syscall from the payload. Specifically, in the meanwhile
of executing the syscalls, the generated instruction trace is
synchronously recorded and delivered to the fuzzing engine
via the debug probe. (3) After completing a payload, the
hardware-assisted controller computes the coverage based
on the instruction traces for the manager.

1 e x t e r n i n t 3 2 t s t a r t e v e n t ;
2 e x t e r n i n t 3 2 t s t o p e v e n t ;
3 vo id TA ProcessEachPayload ( ) {
4 RecvPayloadFromCA ( ) ;
5 DecodePayload ( ) ;
6 / / S t a r t i n v o k i n g s y s c a l l s one by one
7 do {
8 / / Data a c c e s s e v e n t i s t r i g g e r e d , s t a r t t r a c i n g
9 s t a r t e v e n t ++;

10 I n v o k e O n e S y s c a l l ( ) ;
11 / / Data a c c e s s e v e n t i s t r i g g e r e d , s t o p t r a c i n g
12 s t o p e v e n t ++;
13 i f ( A l l S y s c a l l s E x e c u t e d ( ) ){
14 b r e a k ;
15 }
16 } w h i l e ( 1 ) ;
17 }
18

Listing 1: A code snippet containing the main execution
logic from our designed TA.

However, the IoT Trusted OSes are highly resource-
constraint, making locally storing ETM traces infeasible and
limiting the speed of local fuzzing. Therefore, SYZTRUST
utilizes the debug probe (see Section 4.2) to stream all
ETM trace data to the host PC in real time while the
target system is running. Moreover, SYZTRUST enables the
parallel execution of test case generation, transmission, and
execution, as well as coverage calculation, thereby boosting
the speed of fuzzing.

For code coverage, we cannot directly use the raw
instruction trace packets generated by the ETM as a re-
placement for branch coverage due to two issues. First,
there is a gap between the raw ETM trace packets and
the instruction traces generated by the Trusted OS. The
TEE internals are complicated and the ETM component
records instruction traces generated by the software running
on the MCU, including the CA, rich OS, the TA, and the
Trusted OS. Thus, we design a selective instruction trace
collection strategy to generate fine-grained traces. ARM
ETM allows enabling/disabling trace collection when cor-
responding events occur. We configure the different events
via the Data Watchpoint and Trace Unit (DWT) hardware
feature to filter out noisy packets. In SYZTRUST, we aim to
calculate the code coverage triggered by every syscall in a
test case and generated by Trusted OS. Thus, as shown in
Listing 1, we configure the event-based filters by adding two
data write access event conditions. The two event conditions
start ETM tracing before invoking a syscall and stop ETM
tracing after completing the syscall, respectively. In addition,
we specify the address range of the secure world shall be
included in the trace stream to filter noisy trace packets
generated from the normal world.

Second, there is a gap between the raw ETM trace pack-
ets to the quantitive coverage results. To precisely recover
the branch coverage information, we have to decode the raw
trace packets and map them to disassembled binary instruc-
tion address. After that, we can recover the instruction traces
and construct the branch coverage information [29] [25].
However, disassembling code introduces significant run-time
overhead as it incurs high computation cost [30]. Thus, we
calculate the branch coverage directly using the raw trace
packets [26]. At a high level, this calculation mechanism
utilizes a special basic block generated with Linear Code
Sequence and Jump (LCSAJ) [31] to reflect any change in
basic block transitions. LCSAJ basic blocks consist of the
basic address of a raw ETM branch packet and a sequence of
branch conditions. The branch conditions indicate whether
the instructions followed by the basic address are executed.
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This mechanism performs several hash operations on the
LCSAJ basic blocks to transform them into random IDs,
which we utilize as branch coverage feedback.

4.4. State Variable Inference and Monitoring

Here we introduce how to identify the internal state
of the Trusted OS and how to obtain the state coverage
feedback through the state variable monitor component. In
particular, the state variable inference provides the state
variable monitor with the address ranges of the inferred state
variables. Then the state variable monitor tracks the values
of these state variables synchronously when the execution
engine executes test cases. After completing a test case,
the state variable monitor calculates the state coverage and
delivers it to the manager as feedback. Below are the details
about state variable inference and monitoring.

According to the GP TEE Core API specification,
Trusted OSes have to maintain several complex state ma-
chines to achieve the cryptographic algorithm in a highly
secure way. To explore all states of Trusted OS, the
fuzzer needs to feed syscall sequences in several specific
orders with different specific state-related argument val-
ues. Coverage-based fuzzers are unlikely to explore further
states, causing the executions to miss some vulnerabilities
hidden in a deep state. For instance, a syscall sequence
achieves a new DES cryptographic operation configuration
by filling different arguments, whose code coverage may
be the same as the syscall sequence to achieve a new
AES cryptographic operation configuration. Preserving such
syscall sequences as a seed and further exploring them
will achieve new cryptographic operations and gain new
code coverages. However, a coverage-based fuzzer may
discard such syscall sequences that seem to have no code
coverage contribution but trigger new internal states. Thus,
SYZTRUST additionally adopts state coverage as feedback
to handle the statefulness of Trusted OSes.

State variable inference. By referring to the GP TEE
Internal Core API specification and several open-source TEE
implementations from Github, we find that Trusted OSes
maintain two important structures, including the struct
named TEE OperationHandle and the struct named
TEE ObjectHandle, which present the internal states and
control the execution context. We further find that several
vital variables (with names such as operationState and
flags) in the two complex structs determine the Trusted
OS’ internal state. Thus, we utilize the value combinations
of state variables to present the states of Trusted OS and
track all state-related variables to collect their values. Then
we consider a new value of the state variable combination
as a new state. However, the TEE OperationHandle and
TEE ObjectHandle implementations are customized and
close source, making recognizing the state variables and
their addresses challenging.

To handle it, we come up with an active infer-
ence method to recognize the state variables in the
TEE OperationHandle and TEE ObjectHandle im-
plementations. This method is based on the assumption

Trusted OS

Test Harness

Test Cases
TEE_AllocateOperation (TEE_OperationHandle 
*operation, uint32_t algorithm, uint32_t mode, 
uint32_t maxKeySize)
TEE_ResetOperation(…)

…

Output Buffer
0000 0000 00c0 0000 0000 0008 0000
0000 0000 00a8 2d00 2000 0000 0000

…

struct __TEE_OperationHandle{ 
[0:3] algorithm: 0000 0000 00c0 0000 …

…
[40:43] operationState: 0001

…
}

State Variable 
Inferer

Hardware-assisted 
State Variables 

Monitor

Figure 3: State variable inference.

that the state variables in the above two handles will have
different values according to different cryptographic oper-
ation configurations. For instance, in Samsung’s Trusted
OS implementation, after executing several syscalls to set
cryptographic arguments, the value of a state variable from
TEE OperationHandle changes from 0 to 1, which
means a cryptographic operation is initialized.

Based on the assumption, SYZTRUST uses a test har-
ness to generate and execute test cases carefully. Then
SYZTRUST records the buffers of the two handles and ap-
plies state variable inference to detect the address ranges of
state variables in the recorded buffers, as shown in Figure 3.
SYZTRUST first filters randomly changeable byte sequences
that store pointers, encryption keys, and cipher text. Specif-
ically, SYZTRUST conducts a 24-hour basic fuzzing proce-
dure on the initial seeds from Section 4.1 and collects the
buffers of the two handles. SYZTRUST then parses the buffer
into four-byte sequences to recognize changeable values. Af-
ter that, SYZTRUST collects all different values for each byte
sequence in the fuzzing procedure and calculates the number
of times that these different values occur. SYZTRUST con-
siders the byte sequences that occur over 80 times as buffers
and exclude them from the state variables. For the remaining
byte sequences, SYZTRUST applies the following inference
to identify state variables. In our observations, the cryp-
tographic operation configurations are determined by the
operation-related arguments, including the operation mode
(encryption, decryption, or verification) and cryptographic
algorithm (AES, DES, or MAC). The cryptographic oper-
ation configurations are also determined by the operation-
related syscall sequences. We identify such arguments and
syscalls by referring to GP TEE Internal Core API specifica-
tion and conclude the operation-related syscalls include the
syscalls that accept the two handles as an input argument
and are specified to allocate, init, update, and finish a
cryptographic operation, such as TEE AllocateOperation
and TEE AllocateTriansientObject. SYZTRUST per-
forms mutated seeds that include the operation-related
syscalls and records the buffers of the two handles. These
byte sequences that vary with certain syscall sequences with
certain arguments are considered state variables. Finally,
SYZTRUST outputs the address ranges of these byte se-
quences and feeds them to the hardware-assisted controller.
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Figure 4: Seed corpus in SYZTRUST.

State variable monitor. The identified state variables
and their address ranges are then used as configurations
of the hardware-assisted controller. SYZTRUST utilizes the
debug probe to monitor the state variables. When a new
TEE OperationHandle or TEE ObjectHandle is allo-
cated, SYZTRUST records its start address. Given the start
address of the two handles and address ranges of state
variables, SYZTRUST calculates the memory ranges of state
variables and directly reads the memory via the debug probe.
In the fuzzing loop, for each syscall, beside the branch cov-
erage, SYZTRUST records the hash of combination values
of the state variables as the state coverage.

4.5. Fuzzing Loop

After collecting code and state coverage feedback, the
fuzzer enters the main fuzzing loop implemented in the
manager. SYZTRUST has a similar basic fuzzing loop to
SYZKALLER. It schedules two tasks for test case gener-
ation: generating a new test case from syscall templates
or mutating an existing one based on selected seeds. As
for the generation task, SYZTRUST faithfully borrows the
generation strategy from SYZKALLER. As for the mutation
task, SYZTRUST utilizes a composite feedback mechanism
to explore rarely visited states while increasing the code
coverage. Notably, SYZTRUST does not adopt the Triage
scheduling tasks from SYZKALLER due to two key reasons.
First, SYZTRUST fuzzes directly on the MCU, enabling
swift MCU resets after each test case, thus mitigating false
positives in branch coverage. Branch coverage validation
through triaging is, therefore, unnecessary. Second, execut-
ing Trusted OSes’ typically long test cases (averaging 30
syscalls) is time-consuming, incurring a significant overhead
for SYZTRUST to minimize a syscall sequence by removing
syscalls one by one in triage. Appendix A further experimen-
tally demonstrates our intuition for these new scheduling
trasks.

4.6. Composite Feedback Mechanism
SYZTRUST adopts a novel composite feedback mecha-

nism, leveraging both code and state coverage to guide mu-
tation tasks within the fuzzing loop. Specifically, SYZTRUST

preserves and prioritizes seeds that trigger new code or
states. We design two maps as the seed corpus to preserve
seeds according to the code coverage and state feedback.
With such seed corpus, SYZTRUST then periodically se-
lects seeds from the hash table to explore new codes and
new states. This section introduces how SYZTRUST fine-
tunes the evolution through a novel composite feedback
mechanism, including seed preservation and seed selection
strategy.

Seed preservation. Given the composite feedback
mechanism, we thus provide two maps as the seed corpus
to store seeds that discover new state values and new code,
respectively. As shown in Figure 4, in two maps, SYZTRUST
calculates the hash of combination values of state variables
as the keys. SYZTRUST maps the state hashes to their hit
times in the HitMap and maps the state hashes to seed
buckets in the SeedMap. In the SeedMap, for a certain
state hash, the mapping seed bucket contains one or several
seeds that can produce the matching state variable values. To
construct the SeedMap, SYZTRUST handles the following
two situations. First, if a syscall from a test case triggers a
new value combination of state variables, SYZTRUST adds
a new state hash in the SeedMap. Then, SYZTRUST maps
the new state hash to a new seed bucket. To construct the
seed bucket, SYZTRUST utilizes the test case with its branch
coverage to construct a seed node and appends the seed
bucket with the newly constructed seed node. Second, if
a syscall from a test case triggers a new code coverage,
SYZTRUST adds a new seed node in a seed bucket. Specifi-
cally, SYZTRUST calculates the hash of combination values
of state variables produced by the syscall. Then, SYZTRUST
looks up the seed bucket that is mapped to the state hash
and appends a new seed node that contains the test case
and its branch coverage to the seed bucket. Noted, a test
case could be stored in multiple seed buckets if it triggers
multiple feedbacks at the same time. As for the HitMap,
each time after completing a test case, SYZTRUST calculates
all the state hashes it triggers and updates the hit times for
these state hashes according to their hit times.

Seed selection. Given the preserved seed corpus,
SYZTRUST applies a special seed selection strategy to
improve the fuzzing efficiency. Algorithm 1 shows how
SYZTRUST selects seeds from the corpus. First, SYZTRUST
chooses a state and then chooses a seed from the map-
ping seed buckets according to the state. In state selection,
SYZTRUST is more likely to choose a rarely visited state
by a weighted random selection algorithm. The probability
of choosing a seed is negatively correlated with its hit
times. Thus, we assign each seed a weight value, which
is the reciprocal of its hit times. Finally, The probability of
choosing a seed is equal to the proportion of its weight in
the sum of all weights. In seed selection, SYZTRUST is more
likely to choose a seed with high branch coverage. To this
end, SYZTRUST chooses a seed based on a weighted random
selection algorithm, and the probability of choosing a certain
seed is equal to the proportion of its branch coverage in all
coverages. Notably, the probabilities of choosing a state and
seed are dynamically updated since the hit times and the sum
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Algorithm 1: Seed Selection Algorithm
Input: C, SeedMap that maps state hashes to a set

of seeds
Input: H , HitMap that maps state hashes to hit

times
Output: s, the selected seed

1 Sum W ← 0;
2 Map W = initMap() //maps state hashes to their

weights ;
3 for each key ∈ H do
4 t← getValue(H, key);
5 Sum W ← Sum W + t−1;
6 end
7 for each key ∈ H do
8 t← getValue(H, key);
9 Map W ←Map W ∪ (key, t−1/Sum W );

10 end
11 St← WeightedRandom StateSelection(Map W );
12 seedSets← getValue(C, St);
13 s← WeightedRandom SeedSelection(seedSets);

of coverage is updated in the fuzzing procedure.

4.7. Scope and Scalability of SYZTRUST.

SYZTRUST targets Trusted OSes provided by IoT ven-
dors and assumes that (i) a TA can be installed in the
Trusted OS, and (ii) target devices have ETM enabled. These
assumptions align with typical IoT Trusted OS scenarios.
First, given that IoT device manufacturers often need to im-
plement device-specific TAs, Trusted OS binaries supplied
by IoT vendors generally allow TA installation. Second,
SYZTRUST tests IoT Trusted OSes by deploying them on
development boards where ETM is enabled by default.
Moreover, SYZTRUST can directly test the Trusted OSes
following the GP TEE Internal Core API specification with
MCU-specific configurations. It has built-in support for test-
ing on alternative Trusted OSes, including proprietary ones.
Appendix B provides a detailed discussion with concrete
data.

SYZTRUST can be extended to other Trusted OSes. To
test a new Trusted OSes on a different MCU, SYZTRUST
requires MCU configurations, including the address ranges
of specific memory for storing payloads, the addresses of the
data events for the event-based filter, and the address ranges
of secure memory for the address-based filter. We developed
tooling in the CA and TA to automatically help the analyst
obtain all required addresses. In addition, by following the
development documents from IoT TEE vendors, the CA
and TA may require slight adjustments to meet the format
required by the new Trusted OSes and loaded into the Rich
OS and Trusted OS.

To extend SYZTRUST to proprietary Trusted OSes, we
augment the syscall templates and the API declarations in
our designed TA and test harness with the new version
of these customized APIs. This can be done by referring

to the API documents provided by IoT vendors, which is
simple and requires minimum effort. To enable the state-
aware feature, we need expert analysis of the state-related
structures in the Trusted OS and the use of our state variable
inference to collect address ranges. These structures can
be extracted from the documents and header files. We rely
on two heuristics to help extract them. First, state-related
data structures usually have common names, e.g., related to
context or state. Second, the state structures will be the in-
puts and outputs of several crypto operation-related syscalls.
For example, on Link TEE Air a pointer named context
is used among cryptographic syscalls such as tee aes init
and tee aes update, and can be further utilized to infer
state variables. This information can be obtained from the
crypto.h header file.

5. Implementation

We have implemented a prototype of SYZTRUST on
top of SYZKALLER. We replaced SYZKALLER’s execution
engine with our custom CA and TA pair, integrating our
extended syscall templates, eliminating SYZKALLER’s triage
scheduling task, and implementing our own seed preserva-
tion and selection strategy. Sections 4.2, 4.5, and 4.6 detail
these adaptations.

Below are details about our implementations. (1) As for
the overall fuzzing framework, we use the SEGGER J-Trace
Pro debug probe to control the communication between
the fuzzing engine and the execution engine, as shown in
Figure 5. The pair of CA and TA is developed following
the GP TEE Internal Core API specification and is loaded
into the MCU following the instructions provided by the
IoT vendors. To control the debug probe, we developed a
hardware-assisted controller based on the SEGGER J-Link
SDK. The hardware-assisted controller receives commands
from the manager and sends feedback collected on the MCU
to the manager via socket communications. (2) For the
selective instruction trace track, SYZTRUST integrates the
ETM tracing component of the SEGGER J-Trace Pro and
non-invasively records the instruction traces from Trusted
OSes. The raw ETM packets decoder and branch coverage
calculation are accomplished in the hardware-assisted con-
troller. (3) For the state variable inference and monitoring,
SYZTRUST follows the testing strategy in Section 4.4 and
utilizes an RTT component [32] from the SEGGER J-Trace
Pro to record related state variable values and deliver them to
the fuzzing engine. The RTT component accesses memory
in the background with high-speed transmission.

Several tools help us analyze the root cause of detected
crashes. We utilize CmBacktrace, a customized backtrace
tool [33], to track and locate error codes automatically. Ad-
ditionally, we develop TEEKASAN based on KASAN [34]
and MCUASAN [35] to help identify out-of-bound and use-
after-free vulnerabilities. We integrate TEEKASAN with
lightweight compiler instrumentation and develop shadow
memory checking for bug triaging on the open source
Trusted OSes. Since TEEKASAN only analyzed a small
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Figure 5: SYZTRUST setup in fuzzing a target TEE imple-
mentation on the Nuvoton M2351 board. The debug probe
accesses memory and tracks instruction traces on the MCU
via the SWD/ETM interface. It also delivers data to the PC
and receives commands from the PC via a USB interface.

number of vulnerabilities due to the limitation of the instru-
mentation tool and most Trusted OSes are closed-source, we
manually triage the remaining vulnerabilities.

6. Evaluation

In this section, we comprehensively evaluate the
SYZTRUST, demonstrating its effectiveness in fuzzing IoT
Trusted OSes. First, we evaluate the overhead breakdown
of SYZTRUST. Second, we conduct experiments explor-
ing the effectiveness of our designs. Third, we examine
SYZTRUST’s state variable inference capabilities. Finally,
we apply SYZTRUST on fuzzing three real-world IoT
Trusted OSes and introduce their vulnerabilities. In sum-
mary, we aim to answer the following research questions:
• RQ1: What is the overhead breakdown of SYZTRUST?
(Section 6.2)
• RQ2: Is SYZTRUST effective for fuzzing IoT Trusted
OSes? (Section 6.3)
• RQ3: Is the state variable inference method effective, and
are the inferred state variables expressive? (Section 6.4)
• RQ4: How vulnerable are the real-world Trusted OSes
from different IoT vendors from SYZTRUST’s results? (Sec-
tion 6.5)

6.1. Experimental Setup

Target Trusted OSes. We evaluate SYZTRUST on three
Trusted OSes designed for IoT devices, mTower, TinyTEE,
and Link TEE Air. The reason for selecting these targets is
as follows. mTower and TinyTEE both provide the standard
APIs following the GP TEE Internal Core API specification.
In addition, they are developed by two leading IoT vendors,
Samsung and Tsinglink Cloud (which serve more than 30
downstream IoT manufacturers, including China TELECON
and Panasonic), respectively. Link TEE Air is a proprietary
Trusted OSes developed by Ali Cloud for SYZTRUST to
evaluate its built-in support of closed-source and proprietary
Trusted OSes. Moreover, the three targets have been adopted
in a number of IoT devices and their security vulnerabilities
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Figure 6: Overhead breakdown of SYZTRUST.

have a practical impact. In this paper, we evaluate mTower
v0.3.0, TinyTEE v3.0.1, Link TEE Air v2.0.0, and each of
them is the latest version during our experiments.
Experiment settings. We perform our evaluation under
the same experiment settings: a personal computer with
3.20GHz i7-8700 CPU, 32GB RAM, Python 3.8.2, Go
version 1.14, and Windows 10.
Evaluation metrics. We evaluate SYZTRUST with the fol-
lowing three aspects. (1) We measure the branch coverage to
evaluate the capability of exploring codes, which is widely
used in recent research [9] [10]. The branch calculation is
introduced in Section 4.3. (2) To evaluate the capability of
exploring the deep state, we measure the state coverage and
the syscall sequence length of each fuzzer. Specifically, we
consider the value combinations of state variables as a state
and measure the number of different states. (3) We count the
number of unique vulnerabilities. SYZTRUST relies on the
built-in exception handling mechanism to detect abnormal
behaviors of Trusted OSes. We explore the dedicated fault
status registers [36] to identify the HardFault exception
in concerns. These exceptions indicate critical system errors
and thus can be used as a crash signal [21]. For the crashes,
we reproduce them and report their stack traces by CmBack-
Trace to track and locate error codes. We filter stack traces
into unique function call sequences to collect the explored
unique bugs on target programs, which are widely used for
deduplication in the CVE dataset [37] and debugging for
vendors. Following best practices, we extract the top three
function calls in the stack traces to de-duplicate bugs [38],
[39]. We then analyze the root cause of the bugs manually.
State transition analysis. We further develop a script to
automatically construct a state transition tree, which helps
visually understand the practical meaning of the state vari-
ables. Specifically, we utilize the state hashes calculated
based on state variables to present the states of Trusted OSes
and take the syscall sequences as state transition labels.

6.2. Overhead Breakdown (RQ1)

We measure the execution time of sub-processes of
SYZTRUST to assess its impact on the overall overhead. For
each fuzzing round, SYZTRUST performs the following sub-
processes: (1) Reset means the time spent on the MCU re-
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setting. (2) Transfer means the time spent on the manager
engine sending the test case. (3) Execution means the
time spent on the execution engine executing the test case. In
the meanwhile, the debug probe records the raw instruction
trace packets and state variable values and transfers them
to the PC via RTT. (4) CovCalc means the time spent on
the hardware-assisted controller decoding the collected raw
trace packets and calculating the branch coverage. In the
meanwhile, the hardware-assisted controller calculates the
state hashes based on the state variable values. We only
evaluate the sub-processes that are related to interacting
with the resource-limited MCU, which mainly determines
the speed of SYZTRUST. As introduced in Section 4.3, the
subprocesses of Transfer, Execution, and CovCalc
are designed to run in parallel.

The results are shown in Figure 6, from which we
have the following conclusions. First, the overheads of
Reset, Transfer, and CovCalc in SYZTRUST are
relatively low. Thus, using Reset to mitigate the false
positive coverage and vulnerabilities is acceptable. Second,
Execution takes the most time. Test cases for IoT Trusted
OSes include 14.4 syscalls on average and are complex. In
addition, for Execution, the Nuvoton M2351 board used
in our manuscript has no Embedded Trace Buffer (ETB),
SYZTRUST utilizes the debug probe to stream all the ETM
trace data to the host PC in real time. We conducted a 48-
hour fuzzing and found the peak tracing speed is 168 KB/s,
and 92% of the trace files for single syscalls are smaller
than 2KB. In conclusion, the ETM tracing takes less time
than the syscall execution.

RQ1: It takes SYZTRUST 6,290 ms on average to com-
plete performing a test case and collecting its feedback.
The subprocess of executing a test case on the MCU takes
the most time, while the orchestration and analysis takes
only roughly 1% of the overall time.

6.3. Effectiveness of SYZTRUST (RQ2)

In this section, we evaluate SYZKALLER,
SYZTRUST BASIC, SYZTRUST STATE, and
SYZTRUST FSTATE on mTower to explore the effectiveness
of our designs, with each experiment running for 48 hours.
To measure our new scheduling tasks and composite
feedback mechanism, we construct two prototypes of
SYZTRUST only with the new scheduling tasks and
only with the composite feedback mechanism, which
are named SYZTRUST BASIC and SYZTRUST FSTATE,
respectively. In addition, to measure the necessity of our
state variable inference, we construct a prototype that
considers the complete buffer values of two state handles
as state variables named SYZTRUST STATE. We evaluate
three prototypes of SYZTRUST against the state-of-the-art
fuzzer SYZKALLER, which has found a large number of
vulnerabilities on several kernels and is actively maintained.
To reduce the randomness, we repeat all experiments ten
times. The results are shown in Figure 7 and Table 1.

TABLE 1: The unique vulnerabilities found by
SYZKALLER, SYZTRUST BASIC, SYZTRUST STATE,
and SYZTRUST FSTATE in 48 hours. The vulnerabilities
whose IDs are marked with * have already received CVEs.

Vul. ID Syzkaller-Baseline SyzTrust-Basic SyzTrust-State SyzTrust-FState

1*
2*
3
4

5*
6

7*
8*
9*
10
11

12*
13*
14*
15*
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Total 26 28 31 35

• As for branch coverage, which is calculated in
terms of LCSAJ basic block number introduced in Sec-
tion 4.3, SYZKALLER triggers 1,191 branches on average
and is exceeded by all three versions of SYZTRUST shown
in Figure 7. Among them, SYZTRUST BASIC archives
the highest code coverage among the four fuzzers with
1,983 branches, which shows the effectiveness of our new
scheduling tasks and the extended syscall templates. When
state coverage feedback is integrated into SYZTRUST, the
branch coverage explored by the SYZTRUST STATE and
SYZTRUST FSTATE is lower than SYZTRUST BASIC. It is
because their adopted composite feedback mechanisms drive
them to preserve more seeds that trigger new states, which
might have no contribution to the code coverage. Given
the same evaluation time, a certain percentage of time is
assigned to mutating and testing such seeds that trigger new
states, and the code coverage growth will result in slower
growth. Thus, we additionally perform a long-time fuzzing
experiment, and the result shows that SYZTRUST FSTATE
can achieve 1,984 branches in 74 hours.
• As for the triggered state numbers, among the

four fuzzers, SYZTRUST FSTATE triggers the most states
with 2,132 states on average, and SYZKALLER triggers
the least states with 284 states on average shown in
Figure 7b. SYZTRUST STATE has similar performances
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Figure 7: The branch coverage growth, state numbers growth, and unique vulnerability growth discovered by SYZKALLER,
SYZTRUST BASIC, SYZTRUST STATE, and SYZTRUST FSTATE.

on the state growth with SYZTRUST BASIC. It is be-
cause SYZTRUST STATE spends lots of time exploring
the test cases that trigger new values of non-state vari-
ables since SYZTRUST STATE utilizes the two whole han-
dles’ values to present state. To further illustrate this de-
duction, we present Figure 7c, where we calculate the
growth of the states based on the whole handle values. In
such settings, SYZTRUST STATE triggers more states than
SYZTRUST BASIC and SYZKALLER. However, these states
are not expressive and effective for guiding the fuzzer to
trigger more branch coverage and vulnerabilities.
• As for the unique vulnerabilities, the exploration space

of unique vulnerabilities triggered by SYZKALLER with 16
vulnerabilities on average is fully covered and exceeded
by the three versions of SYZTRUST shown in Figure 7.
Among them, SYZTRUST FSTATE detects 21 vulnerabili-
ties on average, which achieves the best vulnerability-finding
capability. SYZTRUST STATE has similar performances on
vulnerability detection with SYZTRUST BASIC and they
detect 20 vulnerabilities on average.

In addition, Table 1 shows the unique vulnerabili-
ties detected by SYZKALLER and the three versions of
SYZTRUST in ten trials during 48 hours. The vulnera-
bility ID in Table 1 is consistent with Table 6 in Ap-
pendix C. First, SYZTRUST finds all the unique vulnerabil-
ities that SYZKALLER finds. Using the currently assigned
CVE as ground truth, SYZTRUST detected more CVEs
than SYZKALLER. Second, SYZTRUST FSTATE finds the
most vulnerabilities and finds eight vulnerabilities that
SYZKALLER and SYZTRUST BASIC cannot find. The eight
vulnerabilities are all triggered by syscall sequences whose
lengths are more than 10, which indicates they are triggered
in a deep state. For instance, the vulnerability of ID 7
occurs when the Trusted OS enters the key set&initialized
state after a MAC function is configured and the function
TEE MACUpdate is invoked with an excessive size value
of ”chunkSize”. SYZTRUST FSTATE can detect more vul-
nerabilities, which is benefited from our composite feedback
mechanism. Specifically, the fuzzer preserves the seeds that
trigger new states and then can detect more vulnerabili-
ties by exploring these seeds. In summary, this evaluation
reveals two observations. First, although coverage-based
fuzzer achieves high coverage effectively, their vulnerability
detection capability will be limited when testing stateful
systems. Second, for stateful systems, understanding their

TABLE 2: The number of state variables inferred by
SYZTRUST. False postive is denoted as FP.

Target Handle Number FP Precision

mTower TEE ObjectHandle 11 1 87.5%
TEE OperationHandle 13 2

TinyTEE TEE ObjectHandle 13 3 82.6%
TEE OperationHandle 10 1

OP-TEE TEE ObjectHandle 10 1 87.0%
TEE OperationHandle 13 2

Link TEE Air context(AES) 6 2 71.4%
context(Hash) 8 2

internal states and utilizing the state feedback to guide
fuzzing will be effective in finding more vulnerabilities.

RQ2: The designs of SYZTRUST are effective as the
three versions of SYZTRUST outperform SYZKALLER in
terms of code and state coverage and detected vulnerabil-
ity numbers. New task scheduling with extended syscall
templates significantly improves the fuzzer’s code ex-
ploration, and the composite feedback mechanism helps
trigger more states and detect more vulnerabilities.

6.4. State Variable Inference (RQ3)

As for state variable inference evaluation, we first eval-
uate the precision of our state variable inference method.
Second, we utilize the executed syscall sequences and their
state hashes to construct a state transition tree and present an
example to show the expressiveness of our state variables.

For the precision evaluation, we manually analyze the
usage of the inferred state variables in the Trusted OSes.
We check if a state variable is used in condition statements
to control the execution context. As for mTower and OP-
TEE, we obtain their source codes and manually read the
state variable-related codes. As for TinyTEE and Link TEE
Air, we invite five experts with software reverse engineering
experiences to manually analyze their binary codes.

The results are shown in Table 2. For Trusted OSes,
including a proprietary one, our active state variable in-
ference method is effective and achieves 83.3% precision
on average. These validated state variables are expressive
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Figure 8: An example of state transition path from the
constructed state transition tree in mTower.

and meaningful, including algorithm, operationClass (de-
scription identifier of operation types, e.g., CIPHER, MAC),
mode (description identifier of operation, e.g., ENCRYPT,
SIGN), and handleState (describing the current state of
the operation, e.g., an operation key has been set). The
false positive state variables are of two types. One is some
variables that indicate the length of several specific buffers,
e.g., digest length, and have specific values. Another type
is several buffers that do not likely have changeable values.
Both of them generate a few false positive new states and
have little impact on the fuzzing procedure.

To evaluate state variables’ expressiveness, we construct
a state transition tree to help visualize their practical
meanings. As shown in Figure 8, we present an example
state transition path from our constructed state transition
tree. We replace the state hashes with numerical values
in the node label to enhance the readability. Below is
the meaning of the example state transition tree. First,
TEE OperationHandle and TEE ObjectHandle
are allocated by TEE AllocateOperation and
TEE AllocateTriansientObject, respectively.
Once a handle is allocated, the state transition is
triggered. Second, TEE ObjectHandle loads a
dummy key by executing TEE InitRefAttribute
and TEE PopulateTransientObject. The dummy
key is then loaded into the TEE OperationHandle
by TEE SetOperationKey. Then state node 4 is
triggered, indicating mTower is in the key set state,
which is consistent with the GP TEE Internal Core
API specification. Third, TEE ObjectHandle is reset
and TEE OperationHandle loads an encryption
key by executing the same syscalls of the second
procedure with a valid key. Fourth, mTower turns to a
new state after TEE CipherInit, which is specified
as key set&initialized state in the specification.
This state means that mTower loads the key and the
initialization vector for encryption. When mTower is in
the key set&initialized, mTower processes the ciphering
operation on provided buffers by TEE CipherUpdate.
Finally, mTower turns to a new state after it frees all the
encryption configurations by TEE FreeOperation. As a
result, our state presentation mechanism truthfully reflects
the workflow of symmetric encryption.

TABLE 3: The number of unique vulnerabilities, branches
and states found by SYZTRUST in 90 hours.

Target Unique bugs Branches States

mTower 38 2,105 3,994
TinyTEE 13 1,072 2,908

Link TEE Air 19 10,710 182,324

RQ3: On average, our active state variable inference
method is effective and achieves 83.3% precision on
average. In addition, from the state transition tree, the
inferred state variables are meaningful.

6.5. Real World Trusted OSes (RQ4)
We apply SYZTRUST on mTower from Samsung, Tiny-

TEE from Tsinglink Cloud, and Link TEE Air for 90
hours. The results are shown in Table 3. The branch and
state coverage explored by SYZTRUST on Link TEE Air is
relatively low because Link TEE Air has a more complicated
and large code base. As for vulnerability detection, a total
of 70 vulnerabilities are found by SYZTRUST, and 28 of
them are confirmed, while vendors are still investigating
the remaining bug reports. We have reported confirmed
vulnerabilities to MITRE, and 10 of them have already been
assigned CVEs.

We categorize vulnerabilities into seven types following
the Common Weakness Enumeration (CWE) List [40] and
we have the following conclusions. First, the Trusted OSes
suffer from frequent null/untrusted pointer dereference vul-
nerabilities. They lack code for validating supplied input
pointers. When a TA tries to read or write a malformed
pointer by invoking Trusted OS syscalls, a crash will be
triggered, resulting in a DoS attack. Even worse, care-
fully designed pointers provided by a TA to the syscall
can compromise the integrity of the execution context and
lead to arbitrary code execution, posing a significant risk.
The problem is severe since Trusted OSes frequently rely
on pointers to transfer complex data structures, which are
used in cryptographic operations. Second, the Trusted OSes
allocate resources without checking bounds. They allow
a TA to achieve excessive memory allocation via a large
len value. Since the IoT TEEs are resource-limited, these
vulnerabilities may easily cause denial of service. Third,
the Trusted OSes suffer from buffer overflow vulnerabilities.
They missed checks for buffer accesses with incorrect length
values and allowed a TA to trigger a memory overwrite,
DoS, and information disclosure. We discuss the mitigation
in Section 7 and list the vulnerabilities with their root cause
analysis found on mTower and TinyTEE in Table 6 in
Appendix C.

Case study 1: buffer overflow (CVE-2022-35858).
SYZTRUST identifies a stack-based buffer overflow
vulnerability in TEE PopulateTransientObject
syscall in mTower, which has 7.8 CVSS Score
according to CVE Details [41]. Specifically, the
TEE PopulateTransientObject syscall creates a
local array directly using the parameter attrCount without
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checking its size. Once TEE PopulateTransientObject
is invoked with a large number in attrCount, a memory
overwrite will be triggered, resulting in Denial-of-Service
(DoS), information leakage, and arbitrary code execution.

Case study 2: null pointer dereference (CVE-2022-
40759). SYZTRUST uncovers a null pointer dereference in
TEE MACCompareF inal in mTower. A DoS attack can
be triggered by invoking TEE MACCompareF inal with
a null pointer for the parameter operation. This bug is hard
to trigger by traditional fuzzing, as it requires testing on a
specific syscall sequence to enter a specific state. SYZTRUST
can effectively identify such syscall sequences that trigger
new states and prioritize testing them. In this way, this
syscall sequence can be fuzzed to cause a null pointer
dereference vulnerability; otherwise, it will be discarded.

RQ4: mTower, TinyTEE and Link TEE Air are all
vulnerable. SYZTRUST identifies 38 vulnerabilities on
mTower, 13 vulnerabilities on TinyTEE, and 19 vulner-
abilities on Link TEE Air, resulting in 10 CVEs.

7. Discussion
Ethic. We pay special attention to the potential ethical is-

sues in this work. First, we obtain all the tested Trusted OSes
from legitimate sources. Second, we have made responsible
disclosure to report all vulnerabilities to IoT vendors.

Lessons. Based on our evaluations, we provide several
security insights about the existing popular IoT Trusted
OSes. First, mTower and TinyTEE are similar to OP-TEE,
an open-source TEE implementation designed for Cortex-
A series MCUs, and they have several similar vulnerabili-
ties. For instance, they both implement vulnerable syscalls
TEE Malloc and TEE Realloc, which allow an exces-
sive memory allocation via a large value. In a resource-
constraint MCU, such implementations can cause a crash
and result in a DoS attack. Thus, the security principles
should be rethought to meet the requirements of the IoT
scenario. As a mitigation, we suggest adding checks when
allocating memory; this suggestion is adopted by Samsung
and TsingLink Cloud. Second, for the null/untrusted pointer
dereference and buffer overflow vulnerabilities, the input
pointers and critical parameters should be especially care-
fully checked. For the untrusted pointer dereferences on
handlers, in addition to checking if the pointer address is
valid, we suggested adding a handler list to mark if they are
allocated or released. Third, we found mTower and TinyTEE
implement several critical syscalls provided by Trusted OS
in non-privileged codes, which is one of the reasons why a
number of null/untrusted pointer dereference vulnerabilities
are exposed. Thus, a TA can easily reach these syscalls
and damage the Trusted OSes. Even worse, mTower and
TinyTEE do not have memory protection mechanisms, such
as ASLR (address space layout randomization). Trusted
OSes and TAs are all loaded into the same fixed address in
the virtual address space. The above two problems make the
exploitation of Trusted OSes easier. However, implement-
ing privileged codes and memory protection mechanisms

requires additional overhead, which may be unacceptable
for IoT devices. We suggest that the downstream TA de-
velopers should be aware of it and carefully design their
TAs to mitigate this security risk, or lightweight Trusted
OS implementations should be designed to minimize the
overhead brought by security mechanisms.

Limitations and future work. While SYZTRUST pro-
vides an effective way to fuzz IoT Trusted OSes, it also
exposes some opportunities for future research. First, our
current prototype of SYZTRUST primarily targets Trusted
OSes following GP TEE Internal Core API specification. It
has built-in support for alternative Trusted OSes, including
proprietary ones, requiring certain modifications and con-
figurations. We demonstrated this flexibility by extending
to a proprietary Trusted OS and plan to extend SyzTrust
for broader applicability. Second, SYZTRUST assumes that
a TA can be installed in the Trusted OS for assisting fuzzing
and ARM ETM is enabled for collecting the traces. In the
case of certain Trusted OSes, such as ISEE-M, which are
developed and used within a relatively tight supply chain,
we will need to engage with the providers of these Trusted
OSes to help assess the security of their respective Trusted
OSes. Finally, SYZTRUST targets the Trusted OS of TEE,
leaving several security aspects of TEEs to be studied, e.g.,
TAs and the interaction mechanism between peripherals and
the Trusted OSes.

8. Related Work

TEE vulnerability detection. Several researchers have
studied and exploited vulnerabilities in TrustZone-based
TEEs. Marcel et al. reverse-engineer HUAWEI’s TEE com-
ponents and present a critical security review [42]. Some
researchers studied the design vulnerabilities of TEE com-
ponents [43], [44], such as Samsung’s TrustZone keymaster
[45] and the interaction between the secure world and the
normal world [46]. Recently, Cerdeira et al. analyzed more
than 200 bugs in TrustZone-assisted TEEs and presented a
systematic view [16]. Since those works require manual ef-
forts for vulnerability detection or only provide an automatic
tool to target a specific vulnerability, some literature works
on automatically testing the TEEs. Some works try to apply
other analysis tools, e.g., utilizing concolic execution [47]
and fuzzing. A number of TA fuzzing tools are developed,
such as TEEzz [9], PartEmu [10], Andrey’s work [48] and
Slava’s work [49]. On the contrary, Trusted OS fuzzing
receives little attention. To the best of our knowledge, the
only tool OP-TEE Fuzzer [50] is for open-source TEEs,
which is not applicable to closed-source IoT TEEs.

ETM-based fuzzing. A few ETM-assisted analysis
methods have been proposed for ARM platforms [51], [52].
For instance, Ninjia [24] utilizes ETM to analyze malware
transparently. HApper [25] and NScope [29] utilize ETM
to unpack Android applications and analyze the Android
native code. Recently, two studies have integrated ETM
features into fuzzing projects. One is AFL++ CoreSight
mode [53], which targets the applications running on ARM
Cortex-A platforms. Another is µAFL [26] to fuzz Linux
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peripheral drivers. However, these works have different
purposes. Specifically, AFL++ CoreSight mode and µAFL
focus on the application, whereas SYZTRUST focuses on
Trusted OSes for IoT devices and incurs many challenges
due to the constrained resource and inability to instru-
mentation. Moreover, SYZTRUST proposes a novel fuzzing
framework and the state-aware feature to effectively test the
stateful Trusted OSes. Consequently, SYZTRUST is a novel
hardware-assisted fuzzing approach proposed in this paper.

State-aware fuzzing. Recently, state-aware fuzzing has
emerged and gained the attention of the research community.
To understand the internal states of target systems, existing
studies utilize the response code of protocol servers [54],
[55] or apply model learning [56], [57] to identify the
server’s states. StateInspector [11] utilizes explicit protocol
packet sequences and run-time memory to infer the server’s
state machine. However, they are not applicable to soft-
ware and OSes since software and OSes do not have such
response codes or packet sequences. IJON [58] proposes
an annotation mechanism that allows the user to infer the
states during the fuzzing procedure manually. After that,
numbers of studies work on automatically inferring the state
of software and OSes [59], [60], [61], such as StateFuzz
[13], SGFUZZ [62], and FUZZUSB [12]. However, these
studies either require the source codes of targets or precise
dynamic instrumentation tools. Even worse, their targets are
Linux kernels, protocols, and drivers, and their intuitions and
observations are not suitable for IoT Trusted OSes.

9. Conclusion

We present SYZTRUST, the first automated and practical
fuzzing system to fuzz Trusted OSes for IoT devices. We
evaluate the effectiveness of the SYZTRUST on the Nuvoton
M2351 board with a Cortex M23, and the results show
SYZTRUST outperforms the baseline fuzzer SYZKALLER
with 66% higher code coverage, 651% higher state cover-
age, and 31% improved vulnerability-finding capability. Fur-
thermore, we apply SYZTRUST to evaluate real-world IoT
Trusted OSes from three leading IoT vendors and detect 70
previously unknown vulnerabilities with security impacts.
In addition, we present the understanding of Trusted OS
vulnerabilities and discuss the limitation and future work.
We believe SYZTRUST provides developers with a powerful
tool to thwart TEE-related vulnerabilities within modern IoT
devices and complete the current TEE fuzzing scope.
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Figure 9: The seed length ratio.

Appendix A.
The Motivation of the New Scheduling

To justify our motivation for the new scheduling tasks
design for fuzzing the IoT Trusted OS implementation,
we compare the seed length ratio when testing Trusted
OSes, Linux kernel and KVM. In the evaluation, we utilize
SYZKALLER to test mTower, Linux kernel (git checkout
356d82172), and KVM v5.19 for 24 hours, and the re-
sults are shown in Figure 9. As shown in Figure 9, the
average seed length when fuzzing Trusted OSes is 27.8
while the others are less than 7. In the triage scheduling
task, SYZKALLER removes syscalls one by one in a syscall
sequence. Then SYZKALLER tests the modified syscall se-
quences to get the smallest syscall sequence that maintains
the same code coverage. For those syscall sequences whose
length is more than 30, the triage scheduling tasks prob-
ably spend lots of time on removing syscalls and testing
the modified syscall sequences. In addition, we count the
number of minimized syscalls when fuzzing mTower. In a
48-hours fuzzing, only 56 syscall sequences are minimized,
and among them, 18 syscall sequences only are removed
with one syscall in the triaging tasks. Thus, SYZTRUST
doesn’t have to perform triaging tasks since most test cases
will not be minimized.

Appendix B.
Scope and Scalability of SYZTRUST

We first provide an overview of the major Trusted OSes
from leading IoT vendors and use the objective data to
validate our assumptions. Then, we justify how to extend
SYZTRUST for Cortex-A TEE OSes.

TABLE 4: An overview of the major Trusted OS implemen-
tations provided by leading IoT vendors.

Vendor Trusted OS Standards Support
(installing TA) Some of supported devices

Samsung mTower GP Standards NuMaker-PFM-M2351
Alibaba Link TEE Air Proprietary NuMaker-PFM-M2351

TsingLink Cloud TinyTEE GP Standards NuMaker-PFM-M2351/LPC55S69/STM32L562
Beanpod ISEE-M GP Standards LPC55S series/GD32W515/STM32L5 series
Trustonic Kinibi-M PSA Certified APIs MicroChip SAML11

ARM TF-M PSA Certified APIs NuMaker-PFM-M2351, STM32L5, ...

As shown in Table 4, there are six major Trusted OSes
for IoT devices, which are widely adopted by the major IoT
MCUs [2], [3], [4], [63], [64], [65], [66]. Three of them
follow the GP standards, and they all allow TA installation.
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TABLE 5: ETM feature on IoT devices.

Manufacturer Device Privilige Secure Debug
(including ETM)

Debug Authentication
Managerment

Nuvoton NuMaker-PFM-M2351 Enable in default ICP programming tool
NXP Semiconductors LPC55S69 Enable in default Debug credential certificate
STMicroelectronics STM32L562 Enable in default STM32CubeProgrammer

GigaDevice GD32W515 Enable in default Efuse
MicroChip SAML11 Enable in default Extern debugger

In addition, as shown in Table 5, though the devices have
multiple debug authentication to disable the privilege secure
debug (debug in secure privileged modes), they enable priv-
ilege secure debug by default, thereby enabling the ETM
feature to collect execution traces. Thus, SYZTRUST can
be directly deployed on half of the major Trusted OSes.
As for other Trusted OSes, SYZTRUST can be applied with
modification introduced in Section 5.

Though our paper focuses on Cortex-M Trusted OS for
IoT devices, SYZTRUST can be applied to those Trusted
OSes for Cortex-A that allows installing a TA and having
their ETM feature enabled. For instance, OP-TEE from
Linaro, Link TEE Pro from Ali Cloud, and iTrustee from
Huawei meet these assumptions. However, for the Cortex-A
Trusted OSes that are developed and employed in a rela-
tively private supply chain, such as QSEE from Qualcomm,
we can collaborate with those mobile vendors and help them
vet the security of their Trusted OSes.

Appendix C.
Vulnerabilites Found by SYZTRUST

We present all the vulnerabilities found by SYZTRUST
on mTower, TinyTEE and Link TEE Air with their root
cause in Table 6. We update the vulnerabilities disclosure
progress in the GitHub link https://github.com/SyzTrust.

Appendix D.
Meta-Review

D.1. Summary

This paper presents a fuzzing framework for TEEs on
IoT devices. It leverages hardware-assisted features such
as Arm ETM to collect traces. It uses the state and code
coverage as composite feedback to guide the fuzzer to
effectively explore more states.

D.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) Creates a New Tool to Enable Future Science. This
paper presents a new fuzzing tool that targets IoT
Trusted OSes.

2) Identifies an Impactful Vulnerability. Several vulnera-
bilities were identified, and CVEs are disclosed.

3) Provides a Valuable Step Forward in an Established
Field. This paper leverages hardware-assisted features
such as Arm ETM to further improve the effectiveness
of TEE OS fuzzing on IoT devices.

D.4. Noteworthy Concerns

The proposed fuzzing framework targets Trusted OSes
following GP TEE internal API specification. It is assumed
that a TA can be installed in the trusted OS for assisting
fuzzing. Arm ETM needs to be enabled for collecting the
traces.

Appendix E.
Response to the Meta-Review

The meta-review notes that our proposed fuzzing frame-
work, SyzTrust, targets trusted OSes following GP TEE
Internal API specification. To clarify, SyzTrust also has
built-in support for testing alternative Trusted OSes, includ-
ing proprietary ones, as demonstrated by our extension of
SyzTrust to the proprietary ”Link TEE Air”. We are also
extending our SyzTrust prototype to other OSes.

The meta-review notes that SyzTrust assumed that a
TA can be installed in the trusted OS for assisting fuzzing
and ARM ETM needs to be enabled for collecting the
traces. We agree and note that these assumptions align with
typical IoT Trusted OS scenarios. SyzTrust focuses on the
Trusted OS binaries provided by IoT vendors, delivering
security insights for device manufacturers and end users.
First, given that IoT device manufacturers often need to im-
plement device-specific TAs, Trusted OS binaries supplied
by IoT vendors generally allow TA installation (similar to
smartphones where manufacturers can similarly install TAs
in the respective TEEs). Second, SyzTrust tests IoT Trusted
OSes by deploying them on development boards where ETM
is enabled by default. For certain Trusted OSes that are
developed and used within a relatively private supply chain,
we will need to engage with the providers of these Trusted
OSes to help assess the security of their respective Trusted
OSes. Appendix B provides a detailed discussion along with
supporting data.
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TABLE 6: Vulnerabilities detected by SYZTRUST.

Vul. ID Target Description Status Root Cause & Impact

1 mTower
Allocation of resources
without limits or throttling

CVE-2022-38155
(7.5 HIGH)

TEE Malloc allows a TA to achieve excessive memory allocation via a large len value

2 mTower
Allocation of resources
without limits or throttling

CVE-2022-40762
(7.5 HIGH)

TEE Realloc allows a TA to achieve excessive memory allocation via a large len value

3 mTower
Allocation of resources
without limits or throttling

Confirmed TEE AllocateOperation allows a TA to achieve excessive memory allocation via a large len value

4 mTower
Allocation of resources
without limits or throttling

Confirmed TEE AllocateTransientObject allows a TA to achieve excessive memory allocation via a large len value

5 mTower Improper input validation
CVE-2022-40761
(7.5 HIGH)

The function tee obj free allows a TA to trigger a denial of service by invoking the function TEE AllocateOperation with a disturbed heap layout, related
to utee cryp obj alloc

6 mTower Buffer overflow Reported
A Buffer Access with Incorrect Length Value vulnerability in the TEE MemMove function allows a TA to trigger a denial of service by invoking the function
TEE MemMove with a ”size” parameter that exceeds the size of ”dest”.

7 mTower Buffer overflow
CVE-2022-40760
(7.5 HIGH)

A Buffer Access with Incorrect Length Value vulnerability in the TEE MACUpdate function allows a TA to trigger a denial of service by invoking the function
TEE MACUpdate with an excessive size value of chunkSize.

8 mTower Buffer overflow
CVE-2022-40757
(7.5 HIGH)

A Buffer Access with Incorrect Length Value vulnerability in the TEE MACComputeFinal function allows a TA to trigger a denial of service by invoking
the function TEE MACComputeFinal with an excessive size value of messageLen.

9 mTower Buffer overflow
CVE-2022-40758
(7.5 HIGH)

A Buffer Access with Incorrect Length Value vulnerability in the TEE CipherUpdate function allows a TA to trigger a denial of service by invoking the function
TEE CipherUpdate with an excessive size value of srcLen.

10 mTower Buffer overflow Reported
A Buffer Access with Incorrect Length Value vulnerability in the TEE DigestDoFinal function allows a TA to trigger a denial of service by invoking the function
TEE DigestDoFinal with an excessive size value of chunkLen.

11 mTower Buffer overflow Reported
A Buffer Access with Incorrect Length Value vulnerability in the TEE DigestUpdate function allows a TA to trigger a denial of service by invoking the function
TEE DigestUpdate with an excessive size value of chunkLen.

12 mTower
Missing release of memory
after effective lifetime

CVE-2022-35858
(7.8 HIGH)

The TEE PopulateTransientObject and utee from attr functions allow a TA to trigger a memory overwrite, denial of service, and information disclosure
by invoking the function TEE PopulateTransientObject with a large number in the parameter attrCount.

13 mTower NULL pointer dereference
CVE-2022-40759
(7.5 HIGH)

TEE MACCompareFinal contains a NULL pointer dereference on the parameter operation

14 mTower NULL pointer dereference
CVE-2022-36621
(7.5 HIGH)

TEE AllocateTransientObject contains a NULL pointer dereference on the parameter object

15 mTower NULL pointer dereference
CVE-2022-36622
(7.5 HIGH)

TEE GetObjectInfo1 contains a NULL pointer dereference on the parameter objectInfo

16 mTower NULL pointer dereference Confirmed TEE GetObjectInfo contains a NULL pointer dereference on the parameter objectInfo
17 mTower Untrusted pointer dereference Reported Uncertain (provided the PoC to the vendor)
18 mTower Untrusted pointer dereference Reported Uncertain (provided the PoC to the vendor)

19 mTower Untrusted pointer dereference Reported
TEE GetObjectInfo and utee cryp obj get info functions allow a corruption on the link field of object handle and then a Denial of Service (DoS) will
be triggered by invoking the function tee obj get

20 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE MACComputeFinal function
21 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE SetOperationKey2 function
22 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE MACUpdate function
23 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE GetOperationInfoMultiple function
24 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE AEEncryptFinal function
25 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE MACInit function
26 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE SetOperationKey function
27 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE ResetOperation function
28 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE DigestUpdate function
29 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE AEDecryptFinal function
30 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE CipherInit function
31 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE FreeOperation function
32 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE DigestDoFinal function
33 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE AllocateOperation function
34 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE FreeTransientObject function
35 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE AEUpdate function
36 mTower Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE ResetOperation function
37 mTower Untrusted pointer dereference Reported Uncertain (provided the PoC to the vendor)
38 mTower Untrusted pointer dereference Reported Uncertain (provided the PoC to the vendor)

39 TinyTEE
Allocation of resources
without limits or throttling

Confirmed TEE Malloc allows a trusted application to achieve Excessive Memory Allocation via a large len value

40 TinyTEE
Allocation of resources
without limits or throttling

Confirmed TEE Realloc allows a trusted application to achieve Excessive Memory Allocation via a large len value

41 TinyTEE NULL pointer dereference Confirmed TEE AllocateTransientObject contains a NULL pointer dereference on the parameter object
42 TinyTEE Untrusted pointer dereference Confirmed An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE DigestUpdate function
43 TinyTEE Untrusted pointer dereference Confirmed An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE SetOperationKey function
44 TinyTEE Untrusted pointer dereference Confirmed An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE SetOperationKey function
45 TinyTEE Untrusted pointer dereference Confirmed An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE ResetOperation function
46 TinyTEE Untrusted pointer dereference Confirmed An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE FreeOperation function
47 TinyTEE Untrusted pointer dereference Confirmed An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE CipherDoFinal function
48 TinyTEE Untrusted pointer dereference Confirmed An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE CipherInit function
49 TinyTEE Untrusted pointer dereference Confirmed An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE AllocateOperation function
50 TinyTEE Untrusted pointer dereference Confirmed An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE AsymmetricSignDigest function
51 TinyTEE Untrusted pointer dereference Confirmed An invalid pointer dereference can be triggered when a TA tries to read a malformed TEE OperationHandle by the TEE CipherUpdate function
52 Link TEE Air NULL pointer dereference Reported tee memcpy calls tee osa memcpy, which contains a NULL pointer dereference on the result object
53 Link TEE Air NULL pointer dereference Reported tee strcpy calls tee osa strcpy, which contains a NULL pointer dereference on the result object
54 Link TEE Air NULL pointer dereference Reported tee memset calls tee osa strcpy, which contains a NULL pointer dereference on the result object

55 Link TEE Air Buffer overflow Reported
tee hash update does not check the size of its second parameter ”size” and calls dev ioctl, which triggers an invalid memory access with large ”size” value
when consecutively copying 64 bytes in tee osa memcpy

56 Link TEE Air NULL pointer dereference Reported tee memmove calls tee osa memmove, which contains a NULL pointer dereference on the result object
57 Link TEE Air NULL pointer dereference Reported tee strcat calls tee osa strcat, which contains a NULL pointer dereference on the result object

58 Link TEE Air Buffer overflow Reported
tee hash digest does not check the size of its third parameter ”size” and calls dev ioctl, which triggers an heap overflow with large ”size” value and causes
an invalid pointer dereference in tee osa free

59 Link TEE Air Untrusted pointer dereference Reported
An invalid pointer dereference can be triggered when a trusted application tries to access an invalid address in the pool free function called
by tee osa free and tee free

60 Link TEE Air NULL pointer dereference Reported tee strncpy calls tee osa strncpy, which contains a NULL pointer dereference on the result object
61 Link TEE Air NULL pointer dereference Reported tee strcasecmp calls tee osa strcasecmp, which contains a NULL pointer dereference on the s1 and s2 object
62 Link TEE Air NULL pointer dereference Reported tee memcmp calls tee osa memcmp, which contains a NULL pointer dereference on the s1 and s2 object
63 Link TEE Air Untrusted pointer dereference Reported An invalid pointer dereference can be triggered when a trusted application tries to access an invalid address in the tee hash init function
64 Link TEE Air NULL pointer dereference Reported tee strncat calls tee osa strncat, which contains a NULL pointer dereference on the result object
65 Link TEE Air NULL pointer dereference Reported tee strnlen calls tee osa strnlen, which contains a NULL pointer dereference on the s object

66 Link TEE Air Buffer overflow Reported
tee base64 encode does not check the size of its parameters ”src len” and ”dst”, which triggers a buffer overflow if ”src len” is larger than the size
of ”dst” and ruins the metadata of the next chunk

67 Link TEE Air NULL pointer dereference Reported tee strlen calls tee osa strlen, which contains a NULL pointer dereference on the s object
68 Link TEE Air NULL pointer dereference Reported tee strcmp calls tee osa strcmp, which contains a NULL pointer dereference on the s1 and s2 object

69 Link TEE Air Buffer overflow Reported
tee hash final does not check the size of its first parameter ”dgst” and calls dev ioctl, which triggers an heap overflow if the size of ”dgst” is smaller than
48 bytes and causes an invalid pointer dereference in tee osa free

70 Link TEE Air Untrusted pointer dereference Reported
An invalid pointer dereference can be triggered when a trusted application tries to access an invalid address in the tee osa memcpy function
called by tee aes init
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