MPInspector: A Systematic and Automatic Approach
for Evaluating the Security of IoT Messaging Protocols

Qinying Wang", Shouling Ji""1, Yuan Tian™, Xuhong Zhang™ 1, Binbin Zhao®, Yuhong Kan', Zhaowei
Lin®, Changting Lin™, Shuiguang Deng™1, Alex X. Liu #, and Raheem Beyah®

TZhejiang University, q[Binjiang Institute of Zhejiang University, +University of Virginia, §Georgia Institute of Technology, iAnt Group

E-mails: {wangqinying, sji} @zju.edu.cn, yuant@virginia.edu, zhangxuhong@zju.edu.cn, binbin.zhao@gatech.edu, {kan_yuhong,

leon.linzw } @zju.edu.cn, linchangting@gmail.com, dengsg@zju.edu.cn, alexliu@antgroup.com, rbeyah@gatech.edu.

Abstract

Facilitated by messaging protocols (MP), many home devices
are connected to the Internet, bringing convenience and ac-
cessibility to customers. However, most deployed MPs on
IoT platforms are fragmented, which are not implemented
carefully to support secure communication. To the best of
our knowledge, there is no systematic solution to perform
automatic security checks on MP implementations yet.

To bridge the gap, we present MPInspector, the first au-
tomatic and systematic solution for vetting the security of
MP implementations. MPInspector combines model learn-
ing with formal analysis and operates in three stages: (a)
using parameter semantics extraction and interaction logic
extraction to automatically infer the state machine of an MP
implementation, (b) generating security properties based on
meta properties and the state machine, and (c) applying auto-
matic property based formal verification to identify property
violations. We evaluate MPInspector on three popular MPs,
including MQTT, CoAP and AMQP, implemented on nine
leading IoT platforms. It identifies 252 property violations,
leveraging which we further identify eleven types of attacks
under two realistic attack scenarios. In addition, we demon-
strate that MP Inspector is lightweight (the average overhead
of end-to-end analysis is ~4.5 hours) and effective with a
precision of 100% in identifying property violations.

1 Introduction

Messaging protocol (MP) is critical for IoT platforms, as it
connects IoT devices to the Internet and enables the commu-
nication between IoT devices, users, manufactures, and IoT
app servers. 0T platforms offer customized MP implemen-
tations with different security schemes for IoT vendors. For
example, Google IoT Core adopts Json Web Token (JWT)
for authentication [14]. Unfortunately, MPs are hard to de-
sign correctly and several implementation flaws have been
identified through ad-hoc manual analysis [45]. These flaws

Shouling Ji and Xuhong Zhang are the co-corresponding authors.

lead to critical consequences, such as denial of service (DoS),
sensitive data theft and malicious message injection [37, 54].
So far, IoT platforms still have limited understanding about
the security of MPs, since neither industry nor academia has
good ways to systemically and effectively evaluate the secu-
rity of MP implementations. Considering the large amount of
diversified IoT platforms, manual analysis that requires signif-
icant expert efforts is infeasible. Consequently, the pressing
question is how to build an automatic tool to verify the se-
curity properties of MP implementations on different IoT
platforms effectively? To answer the question, there are two
main challenges.
Diverse and customized MP implementations. The MP
implementations are diverse. Specifically, there are multiple
types of MPs with different message formats and mechanisms,
such as MQTT (Message Queuing Telemetry Transport) [46],
CoAP (Constrained Application Protocol) [1] and AMQP
(Advanced Message Queuing Protocol) [4]. In addition, there
are various customized implementations on different IoT plat-
forms with different programming languages for each MP.
These diverse and customized MP implementations stress the
scalability of the analysis. Even worse, there are always gaps
between the customized MP implementations and the stan-
dard MP specification, such as the differences on the configu-
ration, parameter semantics, and interaction logic. Therefore,
previous work on analyzing the high-level protocol specifica-
tions [23, 27, 28, 34] is hardly applicable in the IoT context.
Complex and closed-source MP workflow. Checking the
MP implementation requires precisely modeling MP work-
flow including the exchanged parameters and interaction logic.
However, the workflow of MP is complicated, as it connects
multiple devices and usually consists of multiple messages.
Even worse, MP implementations are closed-source. As an
example, the commercial platforms such as AWS IoT Core
[5] and Azure IoT Hub [6] do not open their source code
on the server side. The closed-source MP implementation
requires any testing approach to be black-box and system-
agnostic. Accordingly, previous research on program analysis
for protocols [25, 40, 41] cannot be used.

To handle these challenges, previous research conducts
reverse engineering on the firmware and apps [36], which
requires large expert knowledge. Therefore, it is not scalable
and can be time-consuming. Fuzzing is an alternative solution
[38, 39, 43] to detect flaws by monitoring the crashes of
the system under test. However, it can hardly cover the full
workflow of an MP implementation and cannot discover logic
flaws that do not cause crashes.

Our solution. To address the above challenges, we propose
and implement MPInspector, the first framework to system-
atically and automatically identify security flaws in MP im-
plementations. We follow a property-driven and model-based
testing philosophy. First, we model an MP implementation
into a state machine. Second, we gather the security properties
that need to be verified from the standard MP specification
and refine them based on the learned state machine. Finally,
we detect property violations on the state machine by formal
verification. Specifically, the extracted state machine includes
transition messages and transition logic. Transition messages
are the messages that trigger the transition from one state to
another, while transition logic is also referred to as interac-
tion logic. To support in-depth inspection of security flaws
in MP implementations, MPInspector recovers the detailed
semantics of transition messages, which refer to as the cus-
tomized composition of each parameter in the messages. For
example, the C1ient ID parameter in MQTT [46] may consist
of ProjectId and Deviceld in a customized MP implemen-
tation. As for the interaction logic, we adopt active model
learning [21], a framework to construct the state machine
of a system by providing inputs and observing outputs. In
MPInspector, the inputs are messages sent to an MP imple-
mentation and the outputs are the relevant response messages
or the connection states. Then, MPInspector gathers security
properties that need to be verified, which include the meta
properties concluded from the standard MP specification and
the extended properties inferred from the customized MP im-
plementation. After that, we convert the state machine and
security properties into Tamarin codes and perform formal
verification with Tamarin Prover[17]. In the above procedures,
we meet several challenges as follows.

First, extracting message semantics is non-trivial, as some
parameters may be encrypted, making their semantics hidden.
To tackle this, we construct traffic- and NLP-based methods
to identify the crypto function of each encrypted parameter.
Then, the semantics of a parameter can be recovered accord-
ing to the definition of the identified crypto function. Some
common crypto functions can be identified by pattern match-
ing on the real traffic, while it is almost impossible to define
patterns for the unknown customized crypto functions. Since
the parameters with customized crypto functions are usually
specified in the IoT manufacturer documents offered by IoT
platforms, we further develop a novel NLP-based method to
directly extract the semantics of these parameters from the
IoT manufacturer documents.

Second, considering the IoT context that involves multiple
parties and multiple types of messages, active model learn-
ing cannot be directly applied to extract the interaction logic
of MP implementations, as it only supports two parties and
can be time-consuming when dealing with multiple types
of messages. Moreover, when applying model learning to
test MP implementations in the real world, they may pro-
duce uncertain responses due to uncontrolled factors, e.g.,
failing to receive an expected response due to timeout. In
such a case, model learning may be trapped into an endless
learning procedure, thereby failing to construct the state ma-
chine. To overcome these issues, we design an enhanced
active model learning framework to support observing out-
puts from multiple parties. Further, to speed up the learning
procedure, MP Inspector cuts down unnecessary input tests.
To overcome the uncertainty issue, MPInspector stops the
learning procedure if the same state machine is constructed
more than once.

Third, when performing formal verification, the traditional
Tamarin Prover may fail to prove some properties, as some
MP implementations have complex state transitions. In order
to solve this problem, we design a helping oracle to guide the
proof, which is a script that can help Tamarin Prover adjust
the order of solving goals during the proof.

Evaluation. We apply MPInspector on three popular MPs,
MQTT, CoAP and AMQP, implemented on nine leading [oT
platforms (e.g., Google IoT Core, Azure IoT Hub) [20]. It
successfully recovers the state machines of all the MP im-
plementations and formally verifies their authentication and
secrecy properties. The average overhead of end-to-end anal-
ysis is 4.5 hours with a precision of 100% in identifying prop-
erty violations. Specifically, it checks 57 customized security
properties and detects 252 property violations, leveraging
which we further identify eleven types of attacks. These re-
sults and findings are alarming. Each platform at least violates
18 properties, which enables at least one attack. The resulting
attacks have serious consequences, e.g., privacy leakage and
malicious data injection. Our research further shows that the
main root causes of risky MP implementations are: (1) the
gap between ad-hoc MP implementations and the standard
specification, (2) the undermined security mechanisms under
the resource constrained IoT context, and (3) the lack of care-
ful consideration about device sharing, multi-party involved
communication situations under the IoT context.

Summary and contributions. Our key contributions are:

* We propose MPInspector, the first framework for
automatic security analysis of MP implementations.
MPInspector is precise on the detection of MP imple-
mentation flaws and is extensible and configurable to dif-
ferent IoT platforms and different protocols. We release
MPInspector as an open-source tool for facilitating fur-
ther studies.

e With MPInspector, we evaluate three popular MPs on
nine leading IoT platforms and detect 252 property vi-

olations. We also uncover eleven kinds of attacks that
exploit the combinations of property violations under
practical threat models. We have responsibly reported
these vulnerable implementations to the vendors and got
acknowledged from vendors such as Tuya Smart.

2 Background
2.1 Cloud based IoT Platforms

Today, most IoT platforms (e.g., AWS and Azure) offer MP
implementations, which serve as networking infrastructures
for IoT manufactures and also called SaaS (Software-as-a-
Service) applications. As shown in Figure 1, the service con-
tains the message broker (can be configured by IoT manu-
factures), device SDKs (e.g., cameras and lockers) and APP
SDKs (designed for terminal users). The device sends teleme-
try and event messages and receives command messages via
MPs, and the user application also sends control commands
to the devices remotely via MPs. We regard the device and the
application as clients. All the messages between the device
and the application are forwarded by the broker on the remote
IoT platform. We regard the broker as the server. IoT device
manufactures buy and deploy the SaaS application for MP to
enable users remotely control their devices.

H MQTT/CoAP/AMQP/...

Telemetry and event X\ Telemetry and event
\ message) message D
@ Control command 11_10 Control command

message message
Device SDKs APP SDKs

Message Broker
Figure 1: A typical architecture of MP implementations.

Studying the SaaS appliactions for MPs can cover most de-
vices in the real world. A previous survey [19] shows that IoT
manufactures simply deploy the SaaS without customization.
As aresult, security analysis of the SaaS appalications for MP
can reflect the real-world threats.

2.2 MP Types and Implementations

Various MPs with distinct message types and formats have
been implemented for IoT systems. For example, MQTT has
nine key types of messages running over TCP. Among them,
CONNECT is one type of MQTT messages, and it has five key
parameters including ClientID, Username, Password,
WillTopic and WillMessage. Meanwhile, CoAP has two
types of messages running over UDP. Among them, CON
is one type of CoAP messages, and it has six key pa-
rameters including Uri, MessageId, Request, Option,
Token and Payload. For existing MPs, MQTT, CoAP and
AMQP are the three most prominent MPs adopted by IoT
platforms [20]. For more details and distinctions about these
MPs, please refer to their standard specifications [1, 4, 46].
Based on the standard MP specification, MP implementa-
tions can be customized by the IoT platforms, including the

configuration, the parameters in the messages and the mes-
sage interaction logic. As for configurations, IoT platforms
such as Aliyun Cloud and Tuya Smart optionally adopt the
secure session protocol such as SSL/TLS. The configuration
of secure session protocol may also be customized by IoT
platforms. For example, Google IoT Core and Azure IoT Hub
do not support authenticating a client by the certification on
the server side. Instead, they adopt customized tokens for au-
thentication. As for parameters, the parameters in messages
can have customized semantics. For example, on AWS IoT
Core, the Username and Password are not adopted in the im-
plementation, while on Google IoT core, Username in a CON-
NECT message is composed of ProjectId and deviceld,
e.g., 1ight123/devl. Besides, Tuya Smart assigns a control
command and a timestamp to the payload in the PUBLISH
message and encrypts these values by a private key using
a customized crypto function. Moreover, the message inter-
action logic can be customized. As an example, Bosch IoT
platform allows two clients with the same ClientID to be
connected with the server at the same time, which is, however,
not allowed in the standard MQTT specification.

3 Threat Model

We consider two practical attack scenarios as follows.
Neighbor scenario. In this scenario, the victim and attacker
are within the same local network, e.g., in rental homes, and
the attacker can perform network-based exploits. We apply the
standard Dolev-Yao threat model [31] on the communication
channel, under which the attacker can eavesdrop and modify
all messages transferred on this channel and can impersonate
a legitimate participator to inject messages.
Tenant scenario. Inspired by previous works [35, 36], the
tenant scenario characterizes the situations where a victim
uses some devices previously used by an attacker. Such cases
include second-hand devices [9] and devices in hotels, Airbnb
and rental homes [30]. In this scenario, when the attacker
owns the device, he/she can collect the device identity includ-
ing the password of the device or leave a backdoor on the
device. After that, when the device is delivered to the victim,
the attacker can use the collected identity or the injected back-
door to conduct attacks by sending some malicious command
or publishing fake state of the device.

In both scenarios, the goal of the attacker is to exploit the
flaws in the client-server interaction to take control of the
victim device or monitor/manipulate the victim device data.

4 Design and Implementation

4.1 Overview

Atahigh level, MPInspector aims to automatically verify the
security properties of MP implementations on different IoT
platforms. Figure 2 provides an overview of MPInspector,
which includes five modules: message semantics extraction,

Traffic-based
Semantics Extraction

Parameter
Decoder®

Semantics
Map
Parameter H NLP-based

MP Traffic
Semantics
Searching Semantics Extraction Assignment
@ 1. Message Semantics Extraction

() 5. Formal Verification -—--l(—
'U‘ U Property
i Lemmas _ Violation
] Helping Oracle e | Famarin

loT Platform

Documents | "]
— Semantics Map
Ld

Communication | 1~ Membership Queries | Refinement
Configurations [T—*| Adapter” [« d
= » Equivalence Queries

o - < .
\.} 2. Interaction Logic Extraction

State Machine Code
-
LI |
State Security
Meta ||| Property |[— || Machine — Property
Properties® Extending Translation® Translation
3. Properties Generation 4. Formal Code Translation

Figure 2: Overview of MPInspector. MPInspector supports automatically testing of any customized implementation of MQTT,
CoAP, or AMQP out of the box. To support a new type of MP, the modules labeled with a star need to be extended.

interaction logic extraction, property generation, formal code
translation and formal verification.

The workflow is as follows. First, the message semantics
extraction module accepts MP traffic and IoT platform doc-
uments as inputs, and extracts the customized composition
semantics of each parameter specified in the standard MP
specification. Second, the interaction logic extraction module
performs active model learning to infer the raw state machine
by sending messages to the involved parties in the MP im-
plementation and monitoring their responses. This module
requires users to specify the communication configuration in
order to generate the messages in the learning process. After
these two stages, MP Inspector adds the message semantics
extracted from the first module to the transition messages
in the raw state machine inferred in the second module to
form a detailed state machine. Third, the property generation
module extends the meta properties from the standard MP
specification with the extended properties inferred from the
detailed state machine to form the final security properties
to be validated. Fourth, the formal code translation module
translates the detailed state machine and security properties
into Tamarin code. Finally, MPInspector applies Tamarin
Prover to perform formal verification on the Tamarin code.
The final outputs are the violated security properties. To make
a clearer clarification, we take the MQTT implementation on
the Bosch IoT platform as a running example to explain the
main process, which is shown in Appendix B.

4.2 Inputs

MPInspector takes three inputs: MP traffic, IoT platform
documents and communication configurations.

MP traffic. MP Inspector accepts MP traffic to extract mes-
sage semantics. The analyst can collect the traffic using
his/her device and application to interact with the broker.
He/she can set an access point (AP), to which his/her de-
vice and application are connected. Then, he/she can apply
Wireshark or SSLSplit to record the traffic produced during
the interaction. To collect as many different types of messages
as possible, the analyst can perform different actions on the
client, including sending commands and changing the state
of the client.

IoT platform documents. IoT platform documents are sup-
plements to identify the semantics of parameters that cannot
be identified from MP traffic. IoT platforms generally offer
rich semantics of these parameters in their publicly available
documents for IoT manufacturers. However, the downside of
the semantics information in the documents is that it might
not match the real implementation. Therefore, we treat the
documents as a secondary input and only use it when the
parameter semantics cannot be extracted from the MP traffic.
Communication configurations. These configurations are
required for MPInspector to generate real messages to com-
municate with the broker in the model learning process. They
include the MP type and key communication arguments of
the device or application, which can be collected from the
device’s or application’s configuration file. Taking MQTT as
an example, the key communication arguments are broker
address, MQTT version, [oT platform name, raw password,
secret key of the device or the application if exists, and the
certifications if exist.

4.3 Message Semantics Extraction

The message semantics extraction module aims to extract the
composition semantics of parameters in a message, which
are of two types. First, a parameter can be a composition
of several terms concatenated with delimiters, e.g., param-
eter Username with value 1ight123/devl is composed of
ProjectId and DeviceId. Second, a parameter can be the
encryption of several terms by a certain crypto function, e.g., a
Password with the value of a complex character string can be
the encryption of ProjectId and ExpiredTime by the JWT
function [14]. Identifying the semantics of the second type of
parameters is not trivial, as the value in the traffic does not
have any meaning. To extract these two kinds of semantics, we
provide two alternatives in this module. As shown in Figure 2,
the message semantics extraction module mainly consists of
traffic- and NLP-based semantics extraction. As the semantics
extracted from the real MP traffic reflect the actual MP imple-
mentation, we prioritize the traffic-based semantics extraction.
For the parameters whose semantics cannot be identified from
the MP traffic, we resort to the NLP-based semantics extrac-
tion. Both of these methods output a semantics map, which
maps the parameter values to their corresponding semantics.

For example, the pair {1ight123:ProjectId} means the se-
mantics of the parameter 1ight123 is ProjectId. In the last
step, the two returned semantics maps are merged and fed
to the semantics assignment component, which then replace
the values in a message with the matched semantics from the
semantics map. For parameters having no match in the seman-
tics map, we still need to assign each of them a specific name
for the following modeling task. Thus, we sequentially assign
them a fake semantics, e.g., V0, V1, V2. Taking the parameter
ClientID as an example, its extracted semantics may look
like (V0, aud,V2,V3) where the aud means audience. Be-
low, we detail the traffic- and NLP-based semantics extraction
process.

For the traffic-based semantics extraction, the parameter
parsing component first takes MP traffic as input and decodes
the messages from the MP traffic to extract the values of the
parameters. For some parameter values, their semantics can
be directly inferred from the traffic, e,g., the Payload in a
PUBLISH message may contain the format as key:value or
key=value, and we can directly extract the key as the seman-
tics of the value. Besides, there are also encrypted parameters
whose semantics can only be recovered by identifying the
corresponding crypto function. For common crypto functions,
we find that the encrypted values have common patterns, e.g.,
the common pattern for JWT is ey[A —Za —z0 —9_\\/ +
—]*\\.[A—Za—20—9._\\/+ —]*). In our implementation,
we provide the patterns of nine common crypto functions
(e.g., JIWT function and Base64 encoding). The semantics
extracted from the aforementioned process are also added to
the semantics map.

For the parameters whose semantics cannot be extracted
from the MP traffic, e.g., the ones encrypted by unknown cus-
tomized crypto functions, we propose an NLP-based seman-
tics extraction method. Specifically, it extracts the semantics
from IoT platform documents, which generally specify the
semantics of parameters.

However, IoT platform documents are usually loosely for-
matted with sentences in different formats, posing challenges
to semantics extraction. In our observation, the documents
mainly include three types of sentences as shown in Figure 3:
(1) structured sentence; (2) unstructured sentence in natural
language; and (3) a mixed type sentence that contains both
structured and unstructured parts.

Based on the above observation, we take the following
steps. The parameter searching component takes IoT platform
documents as input and parses sentences from the documents.
For each parameter whose semantics cannot be extracted from
the MP traffic, this component searches the sentences that con-
tain the parameter. Then, the NLP-based semantics extraction
component divides the sentences into the above three types
and analyzes the three types of sentences one by one. This
component first tries to extract semantics from the structured
sentences. If not success, it extracts semantics from the mixed
sentences and finally the unstructured sentences. The identi-

(1) mqttPassword sign_|

(2) the password field contains the SAStoken _‘vThe NLP method

the ﬁeld contalns the SAStoken

(3)p The format of the SAStoken is the same as for both the HTTPS and AMQP protocols: j P?‘tﬁm
SharedAccessSignatures={signature-string}&se={expiry}&sr={URL-encoded-resourceURI maiching

ord) == Pattern matching

The NLP method

m/_m J / / i ﬁ@
f-conjzand.
-&Ue\ N -»de(Verd -& et: W] IN/”E“IN e - ﬂ]ﬂﬂ [compound:

The format of the AStoken is the sameas

Figure 3: Example sentences of three types, including the
structured, unstructured, mixed sentences.

fied semantics will also be stored into a similar semantics map
that will be used in the final semantics assignment component.

In detail, for structured sentences, they have obvious struc-
ture and symbols that indicate the parameter semantics, which
can be extracted by pattern matching. For unstructured sen-
tences, the idea is to find a noun or a noun phrase that has an
equivalence or inclusion relation with the target parameter.
Thus, this module applies the Stanford dependency parser
[44] to identify the equivalence relation and Part-of-Speech
tagger [44] to identify the part of speech of each word in
the sentence. For example, for the unstructured example in
Figure 3, we can identify the target parameter password has
the inclusion relation with the SAStoken, indicated by the
word contain. For mixed sentences, the idea is to find the
sentences satisfying two conditions: (1) the subject of the un-
structured part is the target parameter, and (2) the structured
and the unstructured parts are connected by equivalence sym-
bols such as : and =, which indicate they have equivalence
relation. Finally, this component performs pattern matching
on the structured part to extract the semantics. For the mixed
sentence example in Figure 3, MPInspector first divides the
sentence into a structured part in blue and an unstructured part
in yellow by the delimiter :. Then MPInspector identifies
that the subject of the unstructured part is composed of the
target parameter SAStoken, and finally applies the pattern
matching to the structured part to identify the semantics of
SAStoken.

4.4 Interaction Logic Extraction

This module aims to extract the raw state machine of the
MP broker, since it is responsible for processing messages
from clients and is closed-source. The state machine includes
transition messages and transition logic. Transition messages
represent the messages that are used to trigger the transition
from one state to another, consisting of the input message to
the broker and the response message from the broker. This
module adopts active model learning, a framework to con-
struct the state machine of a system by providing inputs and
observing outputs. In MPInspector, the inputs are different
permutations of message sequences sent to the MP broker

for both the HTTPS and AMQP protocols

and the outputs are the relevant response message sequences.

The basic model learning procedure is as follows. First, this
approach adopts membership queries (MQs) to collect the
responses to the inputs, and generates a state machine (also
noted as a hypothesis). Then it performs equivalence queries
(EQs) to seek an input that makes the hypothesis state machine
and the real system have different outputs. This input is also
called a counterexample that distinguishes the inferred state
machine and the real system. If there is no counterexample,
the inferred state machine is equivalent to the real system and
is the final output of the interaction logic extraction module.
Otherwise, a new round learning with MQs and EQs will be
performed until there is no counterexample.

As shown in Figure 2, we have three components in this
module: adapter, MQ and EQ. The adapter is designed to
generate different input messages, send input messages to the
broker, collect the response messages from the broker, and
decode the response messages to identify their types. When
generating an input message, the adapter directly uses the pa-
rameter values from the semantics map in Section 4.3. How-
ever, some parameters have dynamic values, e.g., a timestamp,
which need to be generated by referring to their semantics
in the semantics map. In addition, there are some dynamic
parameters that are encrypted, for which the adapter follows
the cryptographic algorithm in the their semantics to gener-
ate their values. Specifically, the adapter invokes the corre-
sponding pre-installed encryption interface in MPInspector.
For example, for mgttPassword introduced in Figure 3 from
Section 4.3, the adapter invokes the HMAC interface and per-
forms encryption of the timestamp and the raw password to
generate the value of the parameter mqt tPassword.

We implement the adapter for MQTT, CoAP, and AMQP,
respectively. Based on the inputs and responses, MQs and
EQs can infer the state machine of the broker.

The adapter in existing model learning frameworks usually
only supports the communication of two parties, which is
not applicable in the IoT context where multiple parties are
usually involved. To tackle this, we extend the adapter by the
following steps: (1) extending the adapter to support sending
all types of messages that can be sent to the broker from all
clients, and (2) monitoring the responses of the broker and all
clients. Also, there are implicit responses from the broker. For
example, in MQTT, the broker may accept the input message
but give no response. In addition, the broker may accidentally
close the connection without sending any response message.
Therefore, we further extend the adapter to monitor the con-
nection state of the broker and map the above two situations to
two responses: EMPTY and CONNECTIONCLOSED, respectively.

Considering there may be many types of messages in the
IoT context, the EQ component of existing model learning
frameworks, e.g., Chow’s W-Method [26], needs to send mes-
sage sequences for all the permutations of the message types
to the broker, leading to a high performance overhead. There-
fore, we design a customized EQ component inspired by the

previous work [29] to avoid useless queries to improve the ef-
ficiency. Specifically, we add a check to see if the connection
has been closed when testing a sequence of input messages.
If so, our learning procedure stops seeking counterexamples
with this particular prefix of message sequences, as the fol-
lowing message sequences with this prefix will receive the
same response, namely CONNECTIONCLOSED. Thus, it does
not make sense to continue searching for counterexamples
with this prefix. Our experiments prove that the customized
EQ component reduces the query time by 34% compared to
Chow’s W-Method.

N
Membership °
Communication Qulery Yes Yes
Start configuration —— = m
. Customized
loading h
Equivalence
Query No

@ Cond. 1: If an counterexample is found?
@ Cond. 2: Is the number of same hypotheses greater than the threshold?

Figure 4: The learning procedure of active model learning.

Another challenge is that existing active learning models
may be trapped into an endless learning procedure and thus
fails to construct the state machine. For instance, when apply-
ing model learning in the real world, the targeted broker may
produce uncertain responses, e.g., EMPTY response caused by
timeout, due to uncontrolled factors such as environment. The
EQ component may mistakenly take the uncertain response as
a counterexample, which may further cause the same hypoth-
esis to be generated repeatedly. To tackle this, we observe that
the same hypothesis is generated if and only if it is equivalent
to the MP broker. Therefore, we limit the maximum amount
of the same hypothesis that is generated repeatedly to help
terminate the learning procedure, which is shown in Figure 4.
Additionally, we set a time delay to wait for the broker’s re-
sponse for a query, which can mitigate the uncertain response
issue when performing MQs and EQs. The thresholds for the
amount of the same hypothesis and the time delay can both
be specified in the communication configurations.

After model learning, a raw state machine is generated
whose transition messages only contain message names, e.g.,
CONNECT/CONNACK. Then, MPInspector adds the message
semantics extracted from Section 4.3 to the transition mes-
sages in the raw state machine. In addition, we check if the
MP implementation adopts SSL/TLS. If so, we insert the
state transition with KEYEXCHANGE {sesson_key} after the
initial state to denote the SSL/TLS mechanism, and add the
SSL/TLS encryption semantics on the transition messages.

Apart from the inferred state machine, some unobserv-
able internal protocol states called validity predicates can
not be extracted by the model learning method and need
to be modeled in Section 4.6 for verification. In our study,
a validity predicate describes a constraint that a parameter
should satisfy in a transition, e.g., the client’s signature in
a password parameter should be valid, or the current mes-

sage ID should be less than the received message ID. Thus,
MPInspector extracts the validity predicates by utilizing the
adapter to send messages with carefully mutated parameters
to the server and observing if they are accepted or not. Par-
ticularly, MPInspector supports extracting the validity pred-
icates with the Equality and LessThan constraints. Below
are the corresponding mutation strategies. For the parame-
ter with numerical type, MPInspector mutates it by adding
or subtracting a random number to it. For other parameters,
MPInspector changes one bit of their value for mutation.

4.5 Property Generation

The property generation module generates the security prop-
erties that should be verified on the extracted state ma-
chine. It aims to generate two groups of properties, includ-
ing secrecy properties and authentication properties. The
secrecy properties are for the confidential goal of certain
parameters and the authentication properties are used to
check if certain types of messages are authenticated. The
parameters and messages that should be checked are first
concluded from the standard MP specifications. This ini-
tial set of security properties are also called meta proper-
ties, including the secrecy properties (e.g., Meta_Sec_Set
= {ClietnID, Username, Password,...}) and the au-
thentication properties (e.g., Meta_Auth_Set = {CONNECT,
CONNACK, SUBSCRIBE, ...}). Second, we filter meta prop-
erties, whose targeted messages or parameters do not appear
in the inferred state machine, as not all of the messages and
parameters from the standard specification are used in IoT im-
plementations. Finally, we add the extended properties based
on the inferred state machine, as messages of the same type
may have different parameter semantics in an MP implemen-
tation. For example, the CoAP implementation on Aliyun
Cloud adopts two different CON messages with different pa-
rameter semantics for connecting and publishing messages to
the broker, respectively. Thus, we add the parameters from
such different messages to the secrecy property set and such
different messages to the authentication property set. In con-
clusion, the only hard-coded part in the property generation
module is the meta properties from the standard MP specifica-
tions. Note that this hard-code effort is required per MP type
not per MP implementation. We demonstrate the generated
detailed security properties for MQTT, CoAP and AMQP in
Appendix A.

4.6 Formal Code Translation

The formal code translation module aims to translate the
inferred state machine and security properties into Tamarin
code, which can be further analyzed by Tamarin Prover. There
are two components in this module including state machine
translation and security property translation.

The inferred state machine is translated into rules in

Tamarin, where a rule defines a transition in the state ma-
chine. A rule has a name and three parts, each of which is a
sequence of facts: one for the rule’s left-hand side, one for
the rule’s middle part called action fact, and one for the rule’s
right-hand side. Taking the simplified transition messages
CONNECT/CONNACK that trigger the broker from state A to state
B as an example, the transition indicates the broker receives a
CONNECT message in state A, which is modeled as two facts in-
cluding the fact In (connect) and the fact State_A_broker.
The above two facts are put into the rule’s left-hand side. The
transition indicates the broker turns into state B and sends out
a CONNACK message, which is modeled as two facts including
the fact State_B_broker and the fact Out (connack). The
above two facts are put into the rule’s right-hand side. The
action facts reason about the behaviours in the transition. For
example, we use Commit (broker, connect) toreason one
of the behaviours of the transition CONNECT/CONNACK. The
rule supports let-binding expressions to specify the parame-
ters in the message along with the detailed semantics, e.g.,
connect = <a,b>. After that, we have a simplified rule of
the transition as shown in Listing 1.

We translate the transition messages from the perspectives
of both the broker and the client to completely model an MP
implementation. For example, CONNECT/CONNACK depicts the
transition of the broker that it enters a new state and sends
out a CONNACK message after receiving a CONNECT message.
It also depicts the two transitions of the client: one describes
that the client enters state D from a former state C after sending
a CONNECT message to the broker, and another describes that
the client enters state E from state D after receiving a CONNACK
message from the broker.

rule broker_recv_connect_snd_conncak:
let
connack = <a>
connect = <a, b>
in [In(connect), State_A_broker]
——[Create(’connect’,broker),
Commit(broker ,client ,connect),
Running (broker , client ,connack)]
—>[Out(connack), State_B_broker]

Listing 1: An example rule in Tamarin code.

Additionally, for the validity predicates extracted from
Section 4.4, MPInspector models them as a kind of ac-
tion fact for the related rule’s middle part. Particularly,
MPInspector adopts the kind of action fact called re-
striction, which is offered by Tamarin. Restrictions spec-
ify constraints that a protocol transition should uphold,
e.g., Equal (x,y) and LessThan(x,y). Since some valid-
ity predicates have the encryption semantics, MPInspector
adds the corresponding encryption function to its action
fact, e.g., Equal (verify (sig,m, pubkey), true), where
verify (sig,m, pubkey) is a predefined function in Tamarin
to verify the signature sig on the received message or pa-
rameter m. This action fact indicates that the verify function

equals to the constant true.

When translating the state machine, we first implement
the initialization rules based on the provided initial state to
set up the initial parameters that the broker and clients own.
The initialization rule has a sequence of facts that describe
the initialization of parameters in its left-hand side and a
sequence of facts that describe the initial state in its right-
hand side. Then, if the state machine considers the session
key negotiation, we hard-code a general rule to model the
transition, which is a simplified SSL/TLS key negotiation
modeling. Finally, we follow the above translation principle
to translate the transition messages into rules.

After state machine translation, the security properties are
translated into lemmas, which are first-order logic formulas
over time points and action facts, based on the standard secu-
rity property templates specified from Tamarin Prover docu-
mentations [17]. Particularly, for each authentication property,
MPInspector applies four types of authentication lemmas
based on Lowe’s taxonomy of authentication goals [42] to
make a fine-grained analysis. Lowe defined four kinds of
authentication goals including aliveness, weak agreement,
non-injective agreement and injective agreement.

Based on the two threat models from Section 3, the for-
mal code translation generates two Tamarin codes, on which
Tamarin Prover will perform formal verification, respectively.
In the neighbor scenario, the attacker sniffs the traffic and
gets to know the session key. Thus, we add a fact to the right-
hand side of the session key negotiation rule to indicate that
the session key is leaked. In the tenant scenario, the attacker
knows the initial parameters that the client owns in the initial
state without sniffing the traffic. Thus, we add a fact to the
right-hand side of the initial rules to indicate that the initial
parameters are leaked.

4.7 Formal Verification

The formal verification module aims to validate the lemmas
translated from the security properties on the rules translated
from the state machine. In this module, we apply Tamarin
Prover, an off-the-shelf tool for property verification. How-
ever, in the fully automatic mode of Tamarin, not all lem-
mas can be proved automatically due to the complex state
machine, which is a common limitation of Tamarin Prover
[17][22]. This limitation is related to the ranking of unproved
goals extracted from the lemma. To overcome this, Tamarin
Prover allows a user to supply heuristics called helping oracle
to rank the unproved goals and guide the prove procedure.
Therefore, we design and implement a new ranking strategy
on the helping oracle, which is detailed as follows.

The unproved goals extracted from the lemma include val-
idating the source of a state, the existence of an action fact
that the attacker knows some parameters (e.g., secret keys,
passwords, encrypted parameters), and other goals. First, we
solve the unproved goals to validate the source of a state.

Among these goals, the ones that contain a state of a longer
trace in the state machine should be solved first, as they can
be transformed into the goals that contain a state of a shorter
trace. Second, we solve the unproved goals that validate the
existence of an action fact indicating the attacker knows se-
cret key or password. Third, we solve the unproved goals
that validate the existence of an action indicating the attacker
knows an encrypted parameter. This order can avoid the case
of finding no proof path when solving the existence of an
action that the attacker knows an encrypted parameter. Last,
we apply the default ranking from Tamarin Prover for the
remaining unproved goals. Our strategy helps Tamarin Prover
automatically and efficiently validate the security properties.
For instance, we apply our strategy to prove the authentica-
tion lemma of the CONNECT message on the server-side on
AWS IoT Core. While the automatic mode will never be ter-
minated, our helping oracle proves that this lemma is false,
whose generated proof only costs 13 steps. As a result, our
formal verification module is fully automatic thanks to the
proposed helping oracle.

4.8 Extension for New Types of MPs

MPInspector has built-in support for security analysis on
any customized implementation of MQTT, CoAP and AMQP.
As for new customized MP implementations, the amount of
work to be done is to offer three inputs including MP traffic,
IoT platform documents and communication configurations,
which is simple and requires minimum effort. We only need
expert involvement when we need to analyze a new MP pro-
tocol. First, the message decoder in the message semantics
extraction module and the adapter in the interaction logic ex-
traction module need to be re-implemented according to the
types and formats of the messages in the new MP. Second, the
meta properties for the new MP need to be concluded, which
include the necessary messages and parameters that should be
authenticated and confidential. Third, the pre-extracted mod-
eling knowledge from the standard MP specification, e.g., the
initial states of the clients and the broker, need to be provided
for the formal code translation module. All the knowledge re-
quired is not tied to a specific MP implementation and can be
obtained from the public standard specification of the new MP.
Note that the above operations are a one-shot effort for each
new MP type. Actually, in real world, the number of popular
MPs is limited and usually stable. Therefore, MPInspector
is directly usable in most scenarios.

5 Evaluations

In this section, we utilize MP Inspector to explore ten imple-
mentations of MQTT, CoAP and AMQP on nine leading IoT
platforms. We aim to answer the following research questions:
e RQ1: How well do MP implementations on different plat-
forms follow the security properties?

e RQ2: What are the reasons for property violations?

o RQ3: What kind of attacks can be triggered based on prop-
erty violations?

o RQ4: How efficient and accurate is MPInspector?

5.1 Experiment Settings

We perform our experiments on a laptop with a 2.6 GHz 2-
core Intel i5 processor and 8GB RAM, using Oracle Java
Runtime version 1.8 (64 bit) in its default settings.

Evaluation subjects. To examine the effectiveness of
MPInspector, we evaluate ten MP implementations from
nine leading commercial IoT platforms [8], which are shown
in Table 1. These implementations cover three main types of
MPs, MQTT (including the widely adopted version V3.1.1
and the latest version V5.0), CoAP and AMQP V1.0. We
perform our analysis by buying SaaS applications for MP
from the IoT platforms so that the analysis can cover more
devices in the real world that use these SaaS applications (see
Section 2.1).

Among the ten evaluated MP implementations, five of them
adopt SSL/TLS mechanism, including MQTT on Google
IoT Core [11], Azure IoT Hub[6], AWS IoT Core[5], Bosch
IoT Hub[7], and Aliyun Cloud [3]. We also analyze the se-
crecy and authenticity properties of MP implementations
without SSL/TLS, including MQTT on Tuya Smart [18] and
Mosquitto [15], CoAP on Aliyun Cloud [3] and EMQ X
[10], and AMQP on ActiveMQ [2]. Because they are widely
adopted by the device manufactures [8] and their security
flaws may have a large practical impact.

Validation settings. We use the client SDK provided by the
SaaS application to build potential victims for vulnerabilities
and attack validation. As for Tuya Smart, who has acknowl-
edged our findings, we further validate our findings on the
real devices under their permission. We also build up scripts
based on JavaScript to exploit the vulnerabilities and perform
the validation attacks. Performed as an attacker, we manually
check those lemmas guided by the attack paths generated by
Tamarin Prover. Specifically, we use our scripts to see if we
can acknowledge the secret or impersonate the agents in the
communication between a server and a client.

Ethical consideration. Our study conducts active measure-
ment on the real world MP implementations. As a result, we
take several steps to ensure that our experiments are ethically
sound and do not result in the disruption of other users and
IoT platforms. First, we test the SaaS appliactions for MP on
our own services bought from the IoT platforms, which does
not disrupt other users. Second, when interacting with the
broker on the IoT platforms, our messages are based on the
normal traffic produced by us in our own SaaS applications,
which does not disrupt the IoT platforms. Lastly, we validate
our attacks on Tuya Smart with our own devices, which does
not influence other devices or the platform.

Table 1: An overview of violated properties (noted as Pr.)
in the ten MP implementations. For the checked properties,
please refer to Table 6 and Table 7 in Appendix A.

Platform MPs Nei, ghbiicrecy P]"}enant N elisglkllg::rmicaﬁo"ll}eﬁz}lt
Scenario Scenario Scenario Scenario
ot Vsit | msaae) | wsieer | omape) | A
Ao | Va1 | mst3e) | msae) | Mageop | TS
A | Vel | Mswe | omsie | mageey |G
BO;L‘J"T I\\fngT MS{1,3-6} | MS{1,3-6) | MA{1-9} Néﬁ{;f
St VR | msaey | msee) | mageep | MALS
e YO [| v | S | A
Mosquitto | “(20T N;_sg{}l’ MS{1,39) | MA{I-11} ;’%{_1{?3
EMQX | CoAP | CS{1-6) CS(16] | CA{14] | CA(13)
A1 coap S’S;_ll'(‘)'}’ ot })’}4 | cA{56,8) | CA(5.7)
ActiveMq | AN | As(i-s) AS{1-5) | AA{1-13) 7‘?‘3}3{}33

5.2 Property Validation

This section answers the questions RQ1 and RQ2. We show
the identified property violations in Table 1, where we find
that all MP implementations encounter various authentication
and secrecy property violations, and each MP implementation
violates at least 18 properties.

5.2.1 Neighbor Scenario

In the neighbor scenario, MPInspector identifies that three
out of the ten MP implementations (Mosquitto, EMQ X, and
ActiveMQ) violate all the security properties. The rest of
these implementations violate at least ten secrecy properties
and five authentication properties.

Secrecy properties. We identify that five MP implementa-
tions (MQTT on Tuya Smart and Mosquitto, CoAP on Aliyun
Cloud and EMQ X, AMQP on ActiveMQ) support transmit-
ting messages in plain text. The other five MP implementa-
tions (MQTT on Google [oT Core, AWS IoT Core, Azure IoT
Hub, Bosch IoT Hub, and Aliyun Cloud) adopt SSL/TLS but
are still facing SSL/TLS interception risks because of wrong
configurations. In addition, their messages can still be de-
crypted by man-in-the-middle attacks. As a result, for all the
ten implementations, MP Inspector identifies that the secrecy
properties for the parameters without additional encryption
are all failed. Below we discuss the secrecy properties on
the parameters with additional encryption. Five MP imple-
mentations (Google IoT Core, Azure 10T Hub, Bosch IoT
Hub, Aliyun Cloud, and Tuya Smart) deploy additional en-
cryption on some of their parameters. Among them, Google
IoT Core and Azure IoT Hub use a secret key to generate
JWT and SAS tokens, which are valid before the expired
time. In the neighbor scenario, the unexpired token can be
reused by an attacker. Aliyun Cloud encrypts a client’s secrets

with timestamps by a secret key. The CoAP implementa-
tion in Aliyun Cloud additionally encrypts the payload in
the POST_PUBLISH message with a timestamp by a secret
key. However, MPInspector validates that the timestamp is
not checked by the server, which suggests that the password
and payload in Aliyun Cloud can be reused as well. Tuya
Smart uses a secret key to encrypt a client’s password in the
CONNECT message and encrypt the payload with a timestamp
in the PUBLISH message. MPInspector identifies that Tuya
Smart satisfies the secrecy property for PUBLISH Payload
but fails the secrecy for the password.

Authentication properties. MPInspector validates authen-
tication properties on both the client side and the server side.
Table 1 shows the overview of the authentication property
violations detected by MPInspector.

From the results, three MP implementations without any au-
thentication mechanism (Mosquitto, EMQ X, and ActiveMQ)
fail the aliveness goals of all authentication lemmas. Five
MP implementations including Google IoT Core, AWS IoT
Core, Azure IoT Hub, Bosch IoT Hub, and Aliyun Cloud
that adopt SSL/TLS satisfy the non-injective goals on the
CONNECT message of the server side. However, they still fail
the non-injective goals on the CONNECT message because of
SSL/TLS interception. Their other messages (SUBSCRIBE,
UNSUBSCRIBE, PUBLISH, DISCONNECT messages) without au-
thentication fail the aliveness goals. The rest two implemen-
tations (MQTT on Tuya Smart and CoAP on Aliyun Cloud)
do not adopt SSL/TLS but adopt an encryption mechanism
on their messages. For Tuya Smart, the CONNECT message on
the server side satisfies the aliveness goal but fails the weak
agreement goal. Therefore, even though the password is en-
crypted by a secret key, the attacker can still sniff and reuse
on the CONNECT message. For Aliyun Cloud’s CoAP imple-
mentation, it has encryption but does not check the timestamp
in CON_POSTAUTH and CON_POSTPUBLISH messages. There-
fore, an attacker can connect with the server by replaying
the messages he collected from the client previously. As a
result, in Aliyun Cloud, authentications on CON_POSTAUTH
and CON_POSTPUBLISH messages satisfy the weak agreement
goal but fail the non-injective goal.

5.2.2 Tenant Scenario

In the tenant scenario, MP Inspector has identified that all the
secrecy properties are violated in all the ten implementations.
The reason is that the attacker can impersonate the victim to
connect with the server and accept all the messages from the
server. For authentication properties, MP Inspector identifies
that all the ten implementations violate all the properties on
the server side, but meet the properties on the device side.
This is due to the differences of the attacker’s capabilities
to control the device side and the server side. On the device
side, the attacker cannot steal the session key as he may not
be in the same network with the victim. While on the server

Table 2: Attacks and relevant property (noted as Related Pr.)
violations (@=validated, ©=partially validated).

Neighbor Affected Affected .
Scenario Protocol Platforms Related Pr. Verified
Man-in MA{1-9}, ®
i All protocols All platforms AA{1-13},
the-middle CA({1-8)
AWS 10T Core
MQTT V3.1.1 Taya Smart MA{1-9} []
- MA{1-9],
Replay MQTT V5.0 Mosquirro MA{10-11} []
Altack CoAP EMQ X CA{1-4) o
AMQP V1.0 ActiveMQ AA{1-13} []
Transfer Sync. .
Failure AMQP V1.0 ActiveMQ AA{1-9} []
Tenant Affected Affected .
Scenario Protocol Platforms Related Pr. Verified
Google IoT Core
Azure IoT Hub MS{1-7},
MQTT V3.1l e ToT Core | MA{13,5,)
Client Aliyun Cloud 7,9}
. MQTT V5.0 Mosquitto
Identity AS[15]
Hijacking AMQP V1.0 ActiveMQ AA{135, ®
7,9,11,13}
EMQ X CS({I-11},
CoAP Aliyun Cloud | CA{1,3,5,7) o
Reflection EMQ X CS1,
Attack CoAP Aliyun Cloud | CA{1,3,5,7) 0
Malicious MQTT V3.1.1 AWS IoT Core Msli/fgg}’ []
Topic
Subscription AMQP V1.0 ActiveMQ Ai{i’;}’ []
Malicious | MQTTV3.1.1 | AWS IoT Core MS;/[S/’;’), ()
Topic
Publish CoAP EMQ X CS1,CA3 []
Malicious
Response MQTT V5.0 Mosquitto Msli/lsi%g b ©
Topic Publish
Unauthorized MQTT V3.1.1 AWS IoT Core
Wwill MA(1, 10} [)
Message MQTT V5.0 Mosquitto
Unauthorized
Retained MQTT V5.0 Mosquitto MA(8, 11} []
Message
Tllegal . ASI,
Occupation AMQP V1.0 ActiveMQ AA(L3) [)

side, the attacker can create a fake client to connect with the
server using the identities he created when he has access to
the device. Then, the server would recognize the fake client
as a legitimate one, which allows the attacker to break all the
authentication goals.

5.3 Attacks based on the Property Violations

This section answers the question RQ3. Based on the property
violations, we uncover eleven kinds of attacks on the ten MP
implementations and display the overview in Table 2. We
find that the examined MP implementations are all vulnerable
under the two attack scenarios. Each platform is vulnerable to
at least one attack, and on average 2.8 attacks. These attacks
have serious consequences, such as sensitive data leakage and
malicious message injection. We introduce six attacks below
(more attacks are available in [52]).

5.3.1 Neighbor Scenario Attacks

Replay attack. This attack is due to the authentication prop-
erty violations, which suggests that the server accepts the
messages that the client has sent before. An attacker only
needs to collect them and replays them to the server. We
identify that CoAP on EMQ X, AMQP on ActiveMQ, and
MQTT on Tuya Smart, AWS IoT Core and Mosquitto are
vulnerable to this attack. We launch this attack on Tuya Smart
and Mosquitto by sniffing and collecting the traffic in the
local network and replaying them to the server. As a result,
We successfully replay all the messages, including sending
commands and telemetry data.

AMQP sync. failure. MPInspector finds that the client and
server in AMQP strictly maintain the message ID called De-
livery ID when sending TRANSFER messages. Utilizing the
authentication property violations on AMQP messages, an
attacker can kick the victim offline by sending the messages
in wrong orders or forging the TRANSFER messages with
synchronized Delivery ID using the victim’s identity. We
identify the attack on ActiveMQ. We develop an attack script
using Ettercap and have successfully launched the attack on
ActiveMQ.

5.3.2 Tenant Scenario Attacks

Client identity hijacking. MPInspector detects that the se-
crecy properties on the device side are all violated in the
tenant scenario. Additionally, the server side authentication
properties are also violated. This suggests that an attacker can
impersonate the victim device using its identity to connect to
the server. We name this attack as client identity hijacking.
Especially, MPInspector detects that the MQTT implemen-
tations disconnect the existing client when the server receives
a second connection request with the same ClientID. There-
fore, an attacker can use the victim’s identity to connect to
the server and kick the victim offline. Last, an attacker can
impersonate the device to send messages to the server. We
successfully launch this attack on Google IoT Core, AWS IoT
Core, Aliyun Cloud, Tuya Smart, Mosquitto, and ActiveMQ.
Additionally, we find that the attacker once obtains the cre-
dentials of the client, he can perform this attack for a long
time as these IoT platforms hard-code the credentials of the
clients into device SDKs and cannot dynamically revoke or
grant new credentials.

Reflection attack. The reflection attack is specific to the
CoAP protocol, which is running over UDP. Utilizing the
secrecy property and authentication property violations on
the MP implementations in the server side, an attacker can
forge messages using the victim’s IP address to send to the
server. The workflow is shown in Figure 5. We identify the
attack of CoAP on Aliyun Cloud and EMQ X. As a conse-
quence, an attacker can forge a fake state to deceive the server.
Also, the attacker can forge a message to get a considerable
amount of messages sent to the victim and cause a DoS. To

validate the attack, we use source address spoofing to forge
a CoAP message, and the victim successfully receives the
unexpected response message. According to our experiments,
the amplification reflection rates are 2.25 in Aliyun Cloud
and 0.68 in EMQ X, respectively. The amplification reflection
rate here is a conservative estimation because we adopt the ba-
sic configuration, where the broker only returns the response
code without the device data.

) 0 4
Attacker Victim Device Broker

CON(GET, args)
using victim’ host

ACK

CON(PUT, args, data)
using victim’ host

ACK

Figure 5: CoAP reflection attack.

Malicious topic subscription. Because of the secrecy prop-
erty violation on the topic name and the authentication prop-
erty violation in the SUBSCRIBE message, an attacker can
subscribe to the victim’s topic using his own identity. Taking
AMAQP as an example, as shown in Figure 6, an attacker uses
his own identity ContainerId to subscribe to the victim’s
topic, which is denoted as the target node. When the victim
device sends its secret data, the broker transfers the secret
data to the attacker. We identify this attack on AWS IoT Core
and ActiveMQ and further validate this attack successfully.

& @ >
= 4 o
Attacker Broker Victim App Victim Device
AMQP initiation AMQP initiation

request(Targetname,| request(Targetname,

Containerld’) Containerld)

Transfer(private data)

Transfer(private data)| Transfer(private data)

Figure 6: AMQP malicious topic subscription on ActiveMQ.

Unauthorized response message. This attack works for the
new request/response mechanism introduced by MQTT V35.0.
This mechanism allows the client to publish a message with
a response topic and the correlation data. The client who
receives this message publishes the correlation data to the
response topic. However, an attacker can publish with an
unauthorized response topic to the victim, as shown in Fig-
ure 7. This attack is based on the secrecy property violation
on the victim’s topic. It is identified on Mosquitto as it sup-
ports MQTT V5.0. To validate the attack, we use our script
to simulate the victim and accomplish the request/response
mechanism. We successfully launch the attack as the broker
does not check the authenticity of the response topic.

Illegal occupation. An attacker can exploit the violated se-
crecy property on the victim’s ContainerId and the violated

Attacker

CONNECT(Clientld’,
Username’, Password’)

!

Broker

CONNECT(Clientld,
Username, Password)

Victim Device

SUBSCRIBE(topic)

PUBLISH(topic, data,
properties(responseTopic
(victim’s topic),
correlationData(evil data)))

PUBLISH(topic, data,
properties(responseTopic
(victim’s topic),

correlationData(evil data

PUBLISH(victim’s topic, C
evil data)

Figure 7: MQTT V5.0 unauthorized response topic publish.

a) -
o 4)
Attacker Broker Victim Device
AMQP SASL request
AMQP SASL response

OPEN(Containerld_victim)
OPEN(Containerld_broker)

OPEN(Containerld_victim)
Error(Containerld_victim
already connected!)

AMQP SASL request
AMQP SASL request

OPEN(Containerld_victim)

Error(Containerld_victim
already connected!)

Figure 8: AMQP illegal occupation.

authentication property to perform illegal occupation attacks
on AMQP. The server that receives duplicate OPEN messages
with the same ContainerId of the victim closes the con-
nection without updating the session state. When the client
reconnects to the server, the server believes that the client with
ContainerId is online and rejects the victim’s connection
request. We identify this attack on ActiveMQ, and we believe
this attack is severe. As shown in Figure 8, an attacker can
collect victims’s ContainerIds to perform this attack, and
make plenty of victims out of service unless the broker resets.
We use our script to launch this attack successfully, and the
target victim cannot connect to the broker anymore.

5.3.3 Comparisons with Burglars’ IoT Paradise Paper

In [36], Jia et al. performed a manual analysis on MQTT man-
ually. We compare MPInspector with [36], which is shown
in Table 3. Our framework is automatic while [36] only an-
alyzed MQTT manually. In addition, MPInspector covers
four prominent MPs including MQTT V3.1.1, MQTT V5.0,
CoAP and AMQP V1.0 while [36] only analyzed MQTT
V3.1.1. As for MQTT V3.1.1, we find four new attacks that
[36] did not cover. We consider the neighbor scenario and the
tenant scenario and [36] only considered the latter. There are
two attacks in [36] that MPInspector does not cover. How-
ever, these two attacks are either not MQTT’s implementation
flaw or related to the understanding of bit wise parameters,
which are out of the current design focus of MPInspector.

Instead, MP Inspector is mainly designed for logic flaw analy-
sis on MP implementations. In conclusion, compared with the
previous work [36], MPInspector is an automatic approach,
covers more MPs and reveals four more new attacks.

Table 3: Our results compared with [36] in MQTT
((@=detected, O=not detected)).
Scenario Types of Attacks [36] MPInspector
Neighbor Man in the Middle O []
Scenario Replay Attack O ®
Unauthorized Will Message ® o
Malicious Retained Message o ®
Client Identity Hijacking [) ®
Tenant ClientID identification [O
Scenario [“Malicious Topic Subscription ® ®
Malicious Topic Publish O o
Wildcard-topic Subscription [] O
Unauthorized Response
Topic Publisl? O o

5.4 Performance

This section answers question RQ4. We evaluate the perfor-
mance of MPInspector from three perspectives: (1) state
machine modeling, (2) property violation detection, and (3)
performance overhead.

Evaluation on state machine modeling. The state machine
modeling includes message semantics extraction, interaction
logic extraction and formal code translation. We first evalu-
ate the performance of MPInspector on message semantics
extraction on the ten tested MP implementations. As MP
implementations are closed-sourced, it is difficult to get the
ground truth of the message semantics for the real MP imple-
mentations. Thus, we invite 45 experts with abundant protocol
and software reverse engineering experiences to manually val-
idate our results. Since recovering the full message semantics
depends on the amount of collected MP traffic and the quality
of IoT platform documents, the experts are instructed to only
focus on checking the correctness of each parameter seman-
tics extracted by MPInspector by checking all the available
traffic and documents. Thus, as a precaution, we only report
the precision. As a result, the precision of message seman-
tics extraction on Aliyun Cloud is 96%, while the precision
on other IoT platforms is all 100%. As the value of param-
eter ClientID from Aliyun Cloud includes some irregular
characters, our method cannot handle them and mistakenly
extracts wrong terms of the parameter. Additionally, to prove
the effectiveness of our NLP-based semantics extraction, we
further collect the documents from 20 popular IoT platforms
[13] for evaluation. Similarly, our invited experts manually
verify the correctness of each extracted parameter semantics
by examining the collected documents. Our method yields
94.87% precision. Our method fails to extract the semantics
of some parameters, because the sentences that contain these
parameter semantics do not belong to the considered sentence
types in Section 4.3 and they need to be extracted from several

Table 4: Performance overhead of MPInspector.

Message semantics Interaction Logic Formal code Total
IoT Platform MP Extraction Extraction Translation Time
of Input Ti he
Time (ms) Precision States Time Delay Message #MQs #EQs '1me Time (ms) (h:mm)
Types (h:mm)
Google IoT Core MQTT V3.1.1 115 1.00 3 8s 5 215 373 06:32 0.04 06:32
AWS IoT Core MQTT V3.1.1 102 1.00 3 3s 5 155 116 02:29 0.06 02:29
AWS ToT Core(will) MQTT V3.1.1 103 1.00 8 Ss 4 727 123 04:37 0.67 04:37
Azure IoT Hub MQTT V3.1.1 107 1.00 3 8s 5 65 393 05:31 0.04 05:31
Bosch IoT Hub MQTT V3.1.1 106 1.00 5 9s 5 184 599 09:38 0.03 09:38
Aliyun Cloud MQTT V3.1.1 105 0.96 3 4s 5 62 1361 07:46 0.08 07:46
Tuya Smart MQTT V3.1.1 110 1.00 3 8s 5 65 393 04:53 0.03 04:53
Mosquitto MQTT V5.0 106 1.00 2 Is 5 65 393 00:23 0.03 00:23
Mosquitto(will) MQTT V5.0 106 1.00 6 5s 4 317 123 03:13 1.26 03:13
Mosquitto(retain) MQTT V5.0 106 1.00 8 7s 6 727 749 08:02 1.18 08:02
EMQ X CoAP 928 1.00 1 Is 4 24 420 03:47 125 03:47
Aliyun Cloud CoAP 2152 1.00 2 Is 3 27 273 04:07 1627 04:07
ActiveMQ AMQP V1.0 1808 1.00 9 1s 8 728 846 05:11 1917 05:11
Table 5: Performance of MPInspector on property violation detection.
GO(S’:::;IOT A‘Z(S)rIeOT Aztll_lrs; ot BOSI_EEJOT 1(&31113':;1 Tuya Smart | Mosquitto | EMQ X 1(&1111 g llll;l ActiveMQ | Average
MQTT MQTT MQTT MQTT MQTT MQTT MQTT

Protocol \/3(.2 1.1 \/3(‘2 1.1 v3(.2 1.1 v3(.2 1.1 \/3(.2 1.1 \/3(.2 1.1 vgo CoAP | CoAP | AMQP10 !

Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

False Positive rate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sentences. For more details on precision of message semantics
extraction, please refer to Table 4.

As for interaction logic extraction, we choose four MP im-
plementations for the evaluation, including Mosquitto, EMQ
X, ActiveMQ, and Tuya Smart. The first three are chosen
because they are open-source, thus our experts can refer to
their code for the ground truth. Although Tuya Smart is not
open-source, with the help of their security team, we can
manually review and confirm the result of Tuya Smart. We
cannot validate the other six platforms as we do not have ac-
cess to their source code. The validation shows that the state
machines learned by MPInspector are consistent with these
four implementations. As for model translation, we success-
fully translate all MP state machines into Tamarin code and
validate that the codes can successfully run.

Evaluation on property violation detection. Since it is dif-
ficult to identify all the security property violations of an MP
implementation in practice, we also resort to the 45 experts to
manually confirm each of the identified property violations by
MPInspector. Therefore, we only report precision. Specif-
ically, the experts act as attackers to perform PoC attacks
under the threat models specified in Section 3. For secrecy
properties, they try their best to retrieve the values of the
parameters specified in the target secrecy properties by re-
versing the traffic, application and device. If the parameter
value can be retrieved, we consider the corresponding secrecy
property is violated. As for authentication properties, they
try to complete the interactions by forging the messages in
the target authentication properties. If the interactions can
be completed by them, we consider the target authentication
properties are violated. As a result, the average precision of

property violation detection on the ten MP implementations
is 100%. For more details on the property violation detection,
please refer to Table 5.

Performance overhead. We evaluate the overhead of each
component in MPInspector and the end-to-end system. The
overall overhead of MP implementations is determinated by
the time consumption of the interaction logic extraction mod-
ule, as other modules’ overhead is less than 2152 ms. The
average overhead of the end-to-end system is ~4.5 hours. Con-
sidering the interaction logic extraction is a one-shot task, the
overhead of MPInspector is acceptable. For more details on
precision of performance overhead, please refer to Table 4.

6 Discussions

6.1 Lessons

Based on our evaluation, we conclude that existing popular
MPs do not meet the security requirements mainly for the
following three reasons.

Gap between implementations and specifications. Many
real-world MP implementations do not completely match the
standard specification, which on the other hand might be too
complex for developers to follow. Developers usually have
their own understanding about MPs, which leads to some con-
flicting implementations. For example, the MQTT on Bosch
IoT Hub allows two clients with the same Client ID to be con-
nected to the broker, while the AMQP on ActiveMQ keeps the
connection state of a client even when the client is offline.The
above implementations all violate their specifications and can
be vulnerable.

Gap between constraint resources and security require-
ments. Under the resource-constrained IoT context, devel-
opers usually cut down some security functions. For exam-
ple, Google IoT Core does not support authentication on the
server-side, and the updated version of MQTT on Tuya Smart
does not support authentication based on certifications but
leverages a vulnerable PSK algorithm instead. These incom-
plete security mechanisms are due to that the credential man-
agement of numerous devices is challenging and resource-
constrained devices cannot support big certificate files.

Gap between the MP security design and adversarial en-
vironments. In terms of the MP design, we find that most
developers do not carefully consider the adversarial environ-
ments. First, the adversarial device-sharing cases are not con-
sidered. The devices’ credentials in some MP implementa-
tions are not updated, which may lead to client identity hijack-
ing. Second, the access control of participants is improper.
For instance, the request/response mechanism introduced by
MQTT V5.0 does not limit a client’s authority on the response
topic, which may cause malicious message injection.
Suggestions. With the observations from the security analysis,
we make the following suggestions for manufacturers. First,
manufacturers should guarantee secure communications. The
message integrity and confidentiality should be carefully pro-
tected. MP implementations should use SSL/TLS with careful
configurations, and additional message encryption is highly
recommended. Second, manufacturers need to adopt strict
authentication mechanisms. The device and server should
not only authenticate the initial connection but also authenti-
cate the messages sent to the agents in every phase. Besides,
the timestamp or message sequences should be applied to
avoid replay attacks. Third, clients’ credentials should be dy-
namically granted to the device or revoked from the device.
Currently, most MP implementations have hard-coded the
device credential into the SDKs, which makes it hard for up-
dating the credentials. Last but not least, the client and server
should have fine-grained resource access control. In particu-
lar, we suggest that the identity of a client and her resource
should be carefully protected.

6.2 Limitations and Future Work

A limitation of MPInspector is that we only infer the inter-
action logic and parameter-level semantics of the MP imple-
mentations. An interesting future work is to explore the fine-
grained testing and more flexible model learning strategies to
catch more fine-grained information of MP implementations.
To illustrate, a bit-wise mutation of a specific parameter in
MP messages can help detect if the implementation has ap-
propriately checked the input messages. In addition, it will
also be more efficient to apply NLP techniques to analyze the
protocol specifications to extract the meta properties. Also,
it is worth mentioning that studying SaaS appliactions might
get different results comparing to studying real devices as

IoT vendors may configure the SaaS appliactions and intro-
duce some security mechanisms to accomplish the interaction
between clients and the server.

7 Related Work

State machine learning. A few literature [40] works on au-
tomatically extracting state machines from protocol imple-
mentations. While these works are effective under the white
box setting where the protocol’s source code is available, they
are not very helpful for MP implementations as most of them
are not open-source. In comparison, MPInspector does not
use the source code. Model learning has also been applied to
analyze TLS in [29]. A similar approach is also used in TLS
hostname verification [51].

Formal verification of protocols. In the meanwhile, num-
bers of verification tools are developed such as ProVerif [24]
and Tamarin [17]. Those tools with formal verification have
been proved valuable in assessing the security of protocols,
such as TLS 1.3 [23, 28], LTE [34] and 5G AKA [22, 27].
By contrast, our framework focuses on the security analysis
on protocol implementations. The idea of combining model
learning and model checking was applied in the analysis of
TCP and SSH protocols [32, 33]. Comparing to these works,
we extend this idea in a more automatic way and come up
with the first framework for the security analysis of MP im-
plementations.

Security studies on IoT protocols. Researchers have stud-
ied the security of IoT communication protocols such as BLE,
ZigBee, and Z-Wave [12, 50]. However, little work has been
done to understand the security of IoT MPs, such as MQTT,
AMQP, and CoAP. There are only a few ad-hoc attacks re-
ported. Previous work [16] reveals that attackers can exploit
MQTT by connecting the server without authentication and
[47, 53] confirmed the attack in real world. [35] performed
security evaluation on IoT devices’ interaction applying the
"shared devices attack model". [48] presented HomeSnitch to
identify a device’s behavior in smart home. In addition, An-
drea et al. [49] constructed a tool called MQTTSA to detect
the configuration flaw in MQTT deployments based on the
source code. The closest to our work is [36], which performs
a manual security evaluation on MQTT and identifies several
design vulnerabilities. We compare MPInspector with [36]
in detail in Section 5.3.3. MPInspector is an automatic ap-
proach, covers more MPs and reveals four more new attacks.

8 Conclusion

To systematically understand the security of MPs imple-
mented on [oT platforms, we present MPInspector, an auto-
matic and systematic framework to recover MP implementa-
tions and reveal the gap between protocol implementations
and the desired security properties. MPInspector achieves

automated and systematic security analysis by combining
model learning and formal analysis. We apply MPInspector
to ten implementations of three popular MPs on nine leading
commercial IoT platforms, and identify 252 property viola-
tions and eleven attacks. We also present the understanding
of the MP implementation flaws and discuss the mitigation
and future work. To facilitate future IoT security research, we
open source MPInspector at [52].

Acknowledgments

We sincerely appreciate our shepherds Omar Chowdhury and
Adwait Nadkarni, and all the anonymous reviewers for their
valuable comments to improve our paper. We also thank
Chenyang Lyu, Yuwei Li, Tianyu Du, Changjiang Li, Yuan
Chen, Hong Liang and Han Bao for proofreading this paper.

This work was partly supported by NSFC under No.
U1936215, 61772466, and U1836202, the Zhejiang Provincial
Natural Science Foundation for Distinguished Young Scholars
under No. LR19F020003, the Fundamental Research Funds
for the Central Universities (Zhejiang University NGICS Plat-
form), the State Key Laboratory of Information Security (In-
stitute of Information Engineering, Chinese Academy of Sci-
ences, Beijing 100093) (2020-MS-12), the Zhejiang Provin-
cial Natural Science Foundation under No. LQ21F020010,
and the Ant Financial Research Funding.

References

[1] The Constrained Application Protocol (CoAP). https:
//tools.ietf.org/html/rfc7252s.

[2] ActiveMQ. https://activemq.apache.org/.
[3] Aliyun Cloud. https://iot.aliyun.com.

[4] AMQP Version 1.0. https://www.amgp.org/resou
rces/specifications.

[5] AWS IoT Core. https://aws.amazon.com/iot/.

[6] Azure IoT Hub. https://azure.microsoft.com/
services/iot-hub/.

[7] BoschIoT Hub. https://developer.bosch-iot-s
uite.com.

[8] Competitive Landscape: IoT Platform Vendors. https:
//www.gartner.com/en/documents/3983934/co
mpetitive-landscape-iot-platform-vendors.
Accessed May 22, 2020.

[9] eBay’s 2017 Shopping Report Shows Strong IoT
Growth. https://www.androidheadlines.com
/2018/01/ebays-2017-shopping-report-shows
-strong-iot-growth.html.

[10] EMQ X. https://github.com/emgx/emgx—-coap.

[11] Google IoT Core. https://cloud.google.com/sol
utions/iot/.

[12] Honey, I'm home!!- Hacking Z-Wave Home Automa-
tion Systems. https://www.blackhat.com/us-13/
archives.html#Fouladi.

[13] IoT Cloud Platform Landscape. https://www.post
scapes.com/internet-of-things-platforms/.

[14] JSON Web Tokens(JWT). https://tools.ietf.o
rg/html/rfc75109.

[15] Mosquitto. https://mosquitto.org/.

[16] Taking Over The World Through Mqtt Aftermath.
https://www.blackhat.com/docs/us-17/thursd
ay/us—-17-Lundgren-Taking-Over-The-World-T
hrough-Mgtt-Aftermath.pdf.

[17] The Tamarin Manual. http://tamarin-prover.gi
thub.io/manual/.

[18] Tuya Smart. https://en.tuya.com/.

[19] Why Should You Build Your Own IoT Platform.
https://medium.com/tomorrow-plus-plus/wh
y-should-you-build-your-own-iot-platform-d
££51578c0c.

[20] A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aled-
hari, and M. Ayyash. Internet of things: A survey on
enabling technologies, protocols, and applications. /[EEE
Commun. Surveys. Tuts., 17(4):2347-2376, 2015.

[21] D. Angluin. Learning regular sets from queries and
counterexamples. Inform. and Comput., 75(2):87-106,
1987.

[22] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse,
and V. Stettler. A formal analysis of 5G authentication.
In CCS, pages 1383-1396, 2018.

[23] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified
models and reference implementations for the TLS 1.3
standard candidate. In IEEE S&P, pages 483-502. IEEE,
2017.

[24] B. Blanchet et al. An efficient cryptographic protocol
verifier based on prolog rules. In CSFW, volume 1,
pages 82-96. Citeseer, 2001.

[25] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan,
P. McDaniel, and A. S. Uluagac. Sensitive information
tracking in commodity iot. In USENIX Security, pages
1687-1704, 2018.

https://tools.ietf.org/html/rfc7252s
https://tools.ietf.org/html/rfc7252s
 https://activemq.apache.org/
 https://iot.aliyun.com
https://www.amqp.org/resources/specifications
https://www.amqp.org/resources/specifications
 https://aws.amazon.com/iot/
 https://azure.microsoft.com/services/iot-hub/
 https://azure.microsoft.com/services/iot-hub/
 https://developer.bosch-iot-suite.com
 https://developer.bosch-iot-suite.com
https://www.gartner.com/en/documents/3983934/competitive-landscape-iot-platform-vendors
https://www.gartner.com/en/documents/3983934/competitive-landscape-iot-platform-vendors
https://www.gartner.com/en/documents/3983934/competitive-landscape-iot-platform-vendors
 https://www.androidheadlines.com/2018/01/ebays-2017-shopping-report-shows-strong-iot-growth.html
 https://www.androidheadlines.com/2018/01/ebays-2017-shopping-report-shows-strong-iot-growth.html
 https://www.androidheadlines.com/2018/01/ebays-2017-shopping-report-shows-strong-iot-growth.html
 https://github.com/emqx/emqx-coap
 https://cloud.google.com/solutions/iot/
 https://cloud.google.com/solutions/iot/
https://www.blackhat.com/us-13/archives.html#Fouladi
https://www.blackhat.com/us-13/archives.html#Fouladi
https://www.postscapes.com/internet-of-things-platforms/
https://www.postscapes.com/internet-of-things-platforms/
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
 https://mosquitto.org/
https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf
http://tamarin-prover.github.io/manual/
http://tamarin-prover.github.io/manual/
https://en.tuya.com/
https://medium.com/tomorrow-plus-plus/why-should-you-build-your-own-iot-platform-dff51578c0c
https://medium.com/tomorrow-plus-plus/why-should-you-build-your-own-iot-platform-dff51578c0c
https://medium.com/tomorrow-plus-plus/why-should-you-build-your-own-iot-platform-dff51578c0c
https://medium.com/tomorrow-plus-plus/why-should-you-build-your-own-iot-platform-dff51578c0c

[26] T. S. Chow. Testing software design modeled by finite-
state machines. 1995.

[27] C. Cremers and M. Dehnel-Wild. Component-based
formal analysis of 5G-AKA: Channel assumptions and
session confusion. In NDSS, 2020.

[28] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and
T. van der Merwe. A comprehensive symbolic anal-
ysis of TLS 1.3. In CCS, pages 1773-1788, 2017.

[29] J. De Ruiter and E. Poll. Protocol State Fuzzing of TLS
Implementations. In USENIX Security, pages 193-206,
2015.

[30] R. Dey, S. Sultana, A. Razi, and P. J. Wisniewski. Ex-
ploring smart home device use by airbnb hosts. In Ex-
tended Abstracts of CHI Conference on Human Factors
in Computing Systems, pages 1-8, 2020.

[31] D. Dolev and A. Yao. On the security of public key
protocols. IEEE Transactions on information theory,
29(2):198-208, 1983.

[32] P.Fiterdu-Brostean, R. Janssen, and F. Vaandrager. Com-
bining model learning and model checking to analyze
tcp implementations. In CAV, pages 454—471. Springer,
2016.

[33] P. Fiterau-Brostean, T. Lenaerts, E. Poll, J. de Ruiter,
F. Vaandrager, and P. Verleg. Model learning and model
checking of SSH implementations. In SPIN, pages 142—
151, 2017.

[34] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino.
LTEInspector: A systematic approach for adversarial
testing of 4G LTE. In NDSS, 2018.

[35] B. Janes, H. Crawford, and T. Oconnor. Never ending
story: Authentication and access control design flaws in
shared iot devices. In IEEE Workshop on the Internet of
Safe Things, 2020.

[36] Y.lJia, L. Xing, Y. Mao, D. Zhao, X. Wang, S. Zhao, and
Y. Zhang. Burglars’ iot paradise: Understanding and
mitigating security risks of general messaging protocols
on iot clouds. In IEEE S&P, pages 465-481. 1IEEE,
2020.

[37] J. Y. less, R. Holz, W. Hu, and S. Jha. Automated anal-
ysis of secure internet of things protocols. In ACSAC,
pages 238-249, 2017.

[38] Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen,
C. Lyu, C. Wu, R. Beyah, P. Cheng, et al. Unifuzz:
A holistic and pragmatic metrics-driven platform for
evaluating fuzzers. In USENIX Security, 2021.

[39] Y. Li, S. Ji, C. Lyu, Y. Chen, J. Chen, Q. Gu, C. Wu,
and R. Beyah. V-fuzz: Vulnerability prediction-assisted
evolutionary fuzzing for binary programs. IEEE Trans-
actions on Cybernetics, 2020.

[40] D. Lie, A. Chou, D. Engler, and D. L. Dill. A simple
method for extracting models from protocol code. In
ISCA, pages 192-203. IEEE, 2001.

[41] Q.liu, S. Ji, C. Liu, and C. Wu. A practical black-box at-
tack on source code authorship identification classifiers.
TIFS, 2021.

[42] G.Lowe. A hierarchy of authentication specifications.
In CSFW, pages 31-43. IEEE, 1997.

[43] C.Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and
R. Beyah. MOPT: Optimized mutation scheduling for
fuzzers. In USENIX Security, pages 1949-1966, Santa
Clara, CA, 2019.

[44] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel,
S. Bethard, and D. McClosky. The stanford corenlp
natural language processing toolkit. In ACL, pages 55—
60, 2014.

[45] 1. N. McAteer, M. 1. Malik, Z. Baig, and P. Hannay.
Security vulnerabilities and cyber threat analysis of the
AMQP protocol for the internet of things. 2017.

[46] OASIS. MQTT Version 3.1.1. http:
//docsss.oasis-open.org/mgtt/mgtt/v3.1.
1/os/mgtt-v3.1.1-0s.html.

[47] T. OConnor, W. Enck, and B. Reaves. Blinded and
confused: uncovering systemic flaws in device telemetry
for smart-home internet of things. In WiSec, pages 140—
150, 2019.

[48] T. OConnor, R. Mohamed, M. Miettinen, W. Enck,
B. Reaves, and A.-R. Sadeghi. Homesnitch: behavior
transparency and control for smart home iot devices. In
WiSec, pages 128-138, 2019.

[49] A. Palmieri, P. Prem, S. Ranise, U. Morelli, and T. Ah-
mad. MQTTSA: a tool for automatically assisting the
secure deployments of MQTT brokers. In SERVICES,
volume 2642, pages 47-53. IEEE, 2019.

[50] E.Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn.
Iot goes nuclear: Creating a zigbee chain reaction. In
IEEE S&P, pages 195-212. IEEE, 2017.

[51] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and
S. Jana. HVLearn: Automated black-box analysis of
hostname verification in SSL/TLS implementations. In
IEEE S&P, pages 521-538. IEEE, 2017.

http://docsss.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docsss.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docsss.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[52] Q. Wang, S. Ji, Y. Tian, X. Zhang, B. Zhao, Y. Kan,
Z. Lin, C. Lin, S. Deng, A. X. Liu, and R. Beyah.
MPInspector: a systematic and automatic approach for
evaluating the security of IoT messaging protocols.
https://github.com/wgqqy/MPInspector.

[53] B. Zhao, S. Ji, W.-H. Lee, C. Lin, H. Weng, J. Wu,
P. Zhou, L. Fang, and R. Beyah. A large-scale empir-
ical study on the vulnerability of deployed iot devices.
TDSC, 2020.

[54] W.Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu,
and Y. Zhang. Discovering and understanding the se-
curity hazards in the interactions between IoT devices,
mobile apps, and clouds on smart home platforms. In
USENIX Security, pages 1133—-1150, 2019.

Appendix

A Security properties.

We present the main evaluated secrecy and authentication
properties (both meta and extended properties) in Table 6 and
Table 7, respectively.

Table 6: Secrecy properties.
ID Secrecy Property Description
MS1 Secrecy on MQTT ClientID
* MS2 Secrecy on MQTT Secret Key
MS3 Secrecy on MQTT Username
MS4 Secrecy on MQTT Password
MS5 Secrecy on MQTT Topic
MS6 Secrecy on MQTT Publish Payload
MS7 Secrecy on MQTT User Properties (MQTT V5.0)
MS8 Secrecy on MQTT Publish Response Topic (MQTT V5.0)
MS9 Secrecy on MQTT Publish CorelationData (MQTT V5.0)
AS1 Secrecy on AMQP Containerld
AS2 Secrecy on AMQP Host Name
AS3 Secrecy on AMQP Transfer Payload
AS4 Secrecy on AMQP Target Node
ASS Secrecy on AMQP Source Node
CS1 Secrecy on CoAP Uri
CS2 Secrecy on CoAP Token
CS3 Secrecy on CoAP Messageld
CS4 Secrecy on CoAP ACK payload
* CS5 Secrecy on CoAP CON_GET Payload (EMQ X)
* CS6 Secrecy on CoAP CON_PUT Payload (EMQ X)
* CS7 Secrecy on CoAP Random (Aliyun Cloud)
* CS8 Secrecy on CoAP Secret Key (Aliyun Cloud)
* CS9 Secrecy on CoAP AuthToken (Aliyun Cloud)
= CS10 Secrecy on CoAP CON_POSTAUTH payload (Aliyun Cloud)
* CS11 Secrecy on CoAP CON_POSTPUBLISH payload (Aliyun Cloud)

! The property with x is extended property.

2 MS7-MS9 are only supported in MQTTv5.0, CS5-CS6 are only sup-
ported in EMQ X and CS7-CS11 are only supported in Aliyun Cloud
in CoAP protocol.

B A Running Example

We take the MQTT implementation on Bosch IoT platform
as a running example to clarify how the state machine is
generated and how the formal code is translated.

Table 7: Authentication properties.
ID Property Description

MAI Authentication on MQTT CONNECT message (server->client)

MA2 Authentication on MQTT CONNACK message (client->server)

MA3 Authentication on MQTT SUBSCRIBE message (server->client)

MA4 Authentication on MQTT SUBACK message (client->server)

MAS5 Authentication on MQTT UNSUBSCRIBE message (server->client)
MAG6 Authentication on MQTT UNSUBACK message (client->server)

MA7 Authentication on MQTT PUBLISH message (server->client)

MAS Authentication on MQTT PUBACK message (client->server)

MA9 Authentication on MQTT DISCONNECT message (server->client)
MAI10 Authentication on MQTT Will message PUBLISH message
MAI1 Authentication on MQTT Retained message PUBLISH message

AAl Authentication on AMQP SASL message (server->client)

AA2 Authentication on AMQP SASL message (client->server)

AA3 Authentication on AMQP OPEN message (server->client)

AA4 Authentication on AMQP OPEN message (client->server)

AAS Authentication on AMQP ATTACH message (server->client)

AA6 Authentication on AMQP ATTACH message (client->server)

AA7 Authentication on AMQP FLOW message (server->client)

AA8 Authentication on AMQP FLOW message (client->server)

AA9 Authentication on AMQP TRANSFER message (server->client)

AA10 Authentication on AMQP DISPOSITION message (client->server)
AAT1L Authentication on AMQP DETACH message (server->client)

AA12 Authentication on AMQP DETACH message (client->server)

AA13 Authentication on AMQP CLOSE message (server->client)
* CAl Authentication on CoAP CON_GET message (EMQ X) (server->client)
* CA2 Authentication on CoAP CON_GET message (EMQ X) (client->server)
*CA3 Authentication on CoAP CON_PUT message (EMQ X) (server->client)
* CA4 Authentication on CoAP CON_PUT message (EMQ X) (client->server)
Authentication on CoOAP CON_POSTAUTH message (Aliyun Cloud)

+ CAS .
(server->client)

«CA6 Authentication on CoOAP CON_POSTAUTH message (Aliyun Cloud))
(client->server)

+ CA7 Authentication on CoAP CON_POSTPUBLISH message (Aliyun Cloud)
(server->client)

+ CA8 Authentication on CoAP CON_POSTPUBLISH message (Aliyun Cloud)

(client->server)

! The property with is extended property.

2 Authentication properties on both client side and server sides are considered.
CA1-CA4 are only supported in EMQ X and CA6-CA7 are only supported
by Aliyun Cloud in CoAP protocols.

3 A->B means that A authenticates the message from B.

State machine and property generation. First,
MPInspector applies message semantics extraction
from Section 4.3 to identify the parameter semantics for the
key messages specified in the MQTT standard. In particular,
MPInspector outputs the semantics of nine key MQTT
messages using the JSON encoding, e.g., {"CONNECT" : {
"ClientID":"", "username": {"composition":["aut
hid","tenantid"]}, "password":""}} (an expression
"parameter":"" means that parameter does not have extra
semantics and is consistent with the standard MP).

Second, MPInspector applies interaction logic extrac-
tion from Section 4.3 to the MQTT implementation on the
Bosch IoT platform. It outputs a raw state machine whose
transition messages only contains the message names, e.g.,
CONNECT/CONNACK. Then, it adds the semantics extracted
from Section 4.3 to each transition message. After that, we
have the inferred state machine as shown in Figure 9. Ac-
cording to the property generation method in Section 4.5,
MPInspector outputs the secrecy and authentication proper-
ties as shown in Appendix A.

State machine translation. First, MPInspector generates

https://github.com/wqqqy/MPInspector
https://github.com/wqqqy/MPInspector

KEYEXCHANGEASession_key)

DISCONNECT (senc{'d
session_key)/ -
CONNECT(senc{ClientID,
username(authid,tenantid),
password}session_key)/ -

oM} DISCONNECT(senc{discon’}

/sessionikey)/ -

CONNECT(senc{ClientID,
username(authid,tenantid),
password}session_key)/ -

PUBLISH(senc{topic(qos,V0),
payload, packetID}session_key)/
PUBACK(senc{packetID}session_key)

NSUBSCRIBE(senc{topic(X/0),
a‘ PUBLISH(senc{topic(qos,V0), payload,
‘ packetlD}session_key)/

“~ PUBACK(senc{packetID}session_key)

SUBSCRIBE(senc({topid
packetID}session_key)/
SUBACK(senc{packetID,
qos}session_key)

Figure 9: The inferred state machine of the MQTT implemen-
tation on the Bosch IoT platform.

the special initial rule and session key negotiation rule.
The initial rule defines the initial states of the broker and
clients, which is concluded from the MQTT specification.
MPInspector uses the let-binding expression to specify the
parameter semantics in the initial states, as shown in the sec-
ond line of Listing 2. MPInspector generates the transition
rule for session key negotiation based on the state machine,
which is a simplified SSL/TLS key negotiation modeling. The
rule is shown in Listing 3.

rule init_client:

let username = <~authid ,~tenantid> in

[!SERVER($SERVER), Fr(~ClientID), Fr(~
authid) ,Fr(~tenantid), Fr(~password)]—-—[
1->[!DEVICE ($SERVER, ~ ClientID , username ,~
password) ,! State_0_Serv ($SERVER, ~ ClientID ,
username ,~password) ,! State_0_Dev ($SERVER, ~
ClientID ,username ,~password) |

Listing 2: An example of an initial rule in Tamarin code.

rule client_serv_negotiate_tls_key:
let username = <~authid ,~tenantid> in
[!State_0_Serv ($SERVER, ~ ClientID , username ,~
password) ,! State_0_Client ($SERVER, ~ ClientID
,username ,~password) ,Fr(~session_key)]

——[1->[Dev_Tls_Sym ($SERVER,~ ClientID ,
username ,~password ,~session_key) ,
Serv_Tls_Sym ($SERVER, ~ ClientID , username, ~
password ,~session_key)]

Listing 3: An example of a session key negotiation rule in
Tamarin code.

Second, we translate the transition messages from the
inferred state machine to rules following the principle de-
scribed in Section 4.6. Taking the server side transition C
ONNECT (senc{ClientID,username (V1,V2),password
}session_key/CONNACK (senc(’0’)session_key)) as
an example, we show its translated Tamarin rule in List-
ing 4. As shown in Listing 4, the rule’s left part shows the
state that the server receives the CONNECT message and its

right part indicates the state that the server sends out the
CONNACK message. The action facts in the rule’s middle
part indicate the behaviors in the transition, which will be
used in the property lemmas for reasoning. For example,
Secret (<’ server’,’'password’,password>) means that
the password is supposed to be secret on the server side.

rule serv_recv_connect_snd_conncak:
let username = <authid ,tenantid >

uername = <authid ,tenantid >
connack = senc(’0’,session_key)
connect = senc{ClientID ,username , password}

session_key

in [In(connect), Serv_TIs_Sym ($SERVER,
ClientID , authid , tenantid ,password,
session_key)] ——[Create(’connect’,’server
> ,$SERVER) , Commit($SERVER, username ,<’

server ', client > ,username >), Commit($SERVER
,username ,<’server ’, client >, ClientID >),
Commit ($SERVER, username ,<’ server ’,’ client ’,

password >), Running ($SERVER, username ,<’
client >, server ’,<’connack ’,connack>>),
Honest(<’client ’ ,username >) ,Honest(<’server
> ,$SERVER>), Secret(<’server ’,’username ’,
username >), Secret(<’server ’,’ password’,
password>), Secret(<’server ’,’ ClientID ’,
ClientID >)] —>[Out(connack), State_1_Serv(
$SERVER, ClientID , authid , tenantid , password ,
session_key]

Listing 4: An example of a transition rule in Tamarin code.

Property translation. Finally, the formal code translation
module automatically translates the secrecy properties on
password to Tamarin code using the formula shown in List-
ing 5. MPInspector automatically generates four types of
authentication lemmas for each authentication property based
on the state machine. Taking the injective agreement as an
example, MPInspector generates the formalization of the in-
jective agreement property on a CONNECT message, as shown
in Listing 6. Listing 5 and Listing 6 show the property lem-
mas use the first-order logic formulas over time points and
acton facts, based on the standard security property templates
specified by Tamarin Prover [17].

lemma secret_Password_serv:

"All n #i. Secret(<’server ’,’ password’,n>) @i
==> (not (Ex #j. K(n)@j)) | (Ex A B #j.
Reveal (A,B)@j & Honest(A) @i)"

5

Listing 5: An example of a secrecy lemma in Tamarin code.

lemma injective_agreement_dev_serv_CONNECT:

"All a b t #i. Commit(a,b,<’server ’,’ client ’,t
>) @i ==> (Ex #j. Running(b,a,<’server’,’
client > ,t>) @ & j < i & not (Ex a2 b2 #i2.

Commit(a2,b2,<’server ’,’ client ’,t>) @i2 &
not (#i2 = #i))) | (Ex C data #r. Reveal (C,
data)@r & Honest(C) @i)"

Listing 6: An example of an authentication lemma in Tamarin
code.

	Introduction
	Background
	Cloud based IoT Platforms
	MP Types and Implementations

	Threat Model
	Design and Implementation
	Overview
	Inputs
	Message Semantics Extraction
	Interaction Logic Extraction
	Property Generation
	Formal Code Translation
	Formal Verification
	Extension for New Types of MPs

	Evaluations
	Experiment Settings
	Property Validation
	Neighbor Scenario
	Tenant Scenario

	Attacks based on the Property Violations
	Neighbor Scenario Attacks
	Tenant Scenario Attacks
	Comparisons with Burglars' IoT Paradise Paper

	Performance

	Discussions
	Lessons
	Limitations and Future Work

	Related Work
	Conclusion
	Security properties.
	A Running Example

