
Non-Distinguishable Inconsistencies as a Deterministic Oracle
for Detecting Security Bugs

Qingyang Zhou
zhou1615@umn.edu

University of Minnesota

Qiushi Wu
wu000273@umn.edu

University of Minnesota

Dinghao Liu
dinghao.liu@zju.edu.cn
Zhejiang University

Shouling Ji
sji@zju.edu.cn

Zhejiang University

Kangjie Lu
kjlu@umn.edu

University of Minnesota

Abstract

Security bugs like memory errors are constantly introduced to
software programs, and recent years have witnessed an increasing
number of reported security bugs. Traditional detection approaches
are mainly specification-based—detecting violations against a speci-
fied rule as security bugs. This often does not work well in practice
because specifications are difficult to specify and generalize, leaving
complicated and new types of bugs undetected. Recent research
thus leans toward deviation-based detection which finds a substan-
tial number of similar cases and detects deviating cases as potential
bugs. This, however, suffers from two other problems. First, it re-
quires enough similar cases to find deviations and thus cannot
work for custom code that does not have similar cases. Second,
code-similarity analysis is probabilistic and challenging, so the de-
tection can be unreliable. Sometimes, similar cases can normally
have deviating behaviors under different contexts.

In this paper, we propose a novel approach for detecting se-
curity bugs based on a new concept called Non-Distinguishable
Inconsistencies (NDI). The insight is that if two code paths in a
function exhibit inconsistent security states (such as being freed
or initialized) that are non-distinguishable from the external, such
as the callers, there is no way to recover from the inconsistency
from the external, which results in a bug. Such an approach has
several strengths. First, it is specification-free and thus can support
complicated and new types of bugs. Second, it does not require sim-
ilar cases and by its nature is deterministic. Third, the analysis is
practical by minimizing complicated and lengthy data-flow analysis.
We implemented NDI and applied it to well-tested programs, in-
cluding the OpenSSL library, the FreeBSD kernel, the Apache httpd
server, and the PHP interpreter. The results show that NDI works
for both large and small programs, and it effectively found 51 new
bugs, most of which are otherwise missed by the state-of-the-art
detection tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560661

CCS Concepts

• Security and privacy→ Systems security; Software and ap-

plication security.

Keywords

Deterministic Bug Detection; Static Analysis; Non-Distinguishable
Inconsistencies
ACM Reference Format:

Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji, and Kangjie Lu.
2022. Non-Distinguishable Inconsistencies as a Deterministic Oracle for
Detecting Security Bugs. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’22), November 7–11, 2022,
Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3548606.3560661

1 Introduction

Security bugs have been a major source of cyber attacks. Accord-
ing to Common Weakness Enumeration (CWE), common security
bugs include out-of-bound access, improper input validation, NULL
dereference, etc. Researchers and security professionals have shown
how to exploit such security bugs to take control of a system, leak
information, and cause denial-of-service. The causes of security
bugs are typically incorrect security-related operations, such as
missing a bound check, pointer nullification, or memory release.

Bug detection is a well-explored topic and is still a popular solu-
tion to mitigating the threats from security bugs. A first wave of
detection approaches is based on specifications. Developers first
provide specifications for secure code, and then analyze the code to
detect violations against the specifications as potential bugs [6, 8–
10, 12, 28, 30, 35, 37]. Well-known problems with such an approach
are that specifications are hard to obtain, given the complexity of
code, and that understanding and checking the code against speci-
fications can be hard. As a result, existing specifications only cover
limited types of bugs with clear patterns.

Recent research has shifted to cross-checking [1, 13, 14, 20, 22, 43]
for bug detection. Its idea is to first collect similar code snippets
and then identify deviating cases as potential bugs. This is intu-
itive because in general most of the similar code snippets should
be correct. It has helped detect many bugs of various types. An
advantage of cross-checking is that it can be agnostic to security
operations and does not require the understanding of complicated
code. However, the cross-checking approach works based on two
assumptions: (1) we could find enough similar code snippets and (2)
the similar code snippets should have similar security operations.

https://doi.org/10.1145/3548606.3560661
https://doi.org/10.1145/3548606.3560661
https://doi.org/10.1145/3548606.3560661

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji, & Kangjie Lu

In practice, both assumptions may not hold. The first assumption
can be invalid due to custom code or inaccurate similarity analysis.
Custom code is common in programs that may not have similar
code snippets. For example, while there are only a few standard
allocation functions (e.g., kmalloc), K-MeLD [5] finds more than 800
custom allocation functions in the Linux kernel. On the other hand,
code-similarity analysis [11, 15, 16, 33, 40, 42] is considered a hard
problem. Existing techniques mainly focus on context-insensitive
syntactical or structural similarity instead of code semantics and
logic, resulting in inaccurate similarity analysis. The second assump-
tion may also be invalid, as similar code snippets may normally
have divergent operations under different contexts. As a result,
cross-checking fails in cases lacking similar code snippets, and its
detection results are probabilistic and can be unreliable.

In this paper, we present a deterministic oracle for detecting
security bugs, namely Non-Distinguishable Inconsistencies (NDI).
NDI is based on a fact that if two code paths (no matter if they are
similar or not) in a function has an inconsistent security state, e.g.,
one frees a pointer, but the other does not, the inconsistencymust be
recovered in the callers, and to recover from the inconsistency, the
callers must be able to distinguish which path of the two has been
taken, which requires a distinguisher variable (e.g., different return
values). In cases where such distinguisher variables do not exist or
are overwritten, the callers will never be able to recover from the
inconsistent security state, so we can reliably conclude that this
constitutes a bug. Though NDI is deterministic theoretically, false
positives still exist in practice, because of certain implementation
limitations, which will be discussed in 6.6.

NDI has multiple advantages over existing bug-detection ap-
proaches. The most important one is that its detection can be
deterministic in principle. As long as the inconsistent paths are
non-distinguishable from callers, the inconsistency cannot be re-
covered, leading to a bug. Second, the detection tends to be localized.
The analysis scope is typically limited to the code paths within a
function and a few callers. It does not require the analysis of lengthy
or complicated data flows. Third, the detection does not require
specifications or similarity analysis, and thus is able to generalize.
For example, unlike cross-checking, NDI can also work well on
small projects that contain much less similar paths.

We realize the NDI approach through three phases. First, given
a function, we enumerate any two code paths, which are likely not
similar, and identify if they have an inconsistent security state or
operation such as memory free. We define the variable involved
in the security state or operation as critical variable. Second, for
a path pair with an inconsistency, we comprehensively identify
any variable that is able to distinguish the paths. Such a variable is
typically used in an if statement or a return statement. If there is
no distinguisher, we already know it is a potential bug. Otherwise,
we will move to the third phase—analyzing the callers of the given
function to see if they ever recover from the inconsistency using
distinguishers before the critical variable is used. If not, we report it
as a potential bug. In addition, if the distinguishers are overwritten
without recovery, we also conclude it is a potential bug.

When achieving NDI, we identify two technical challenges. The
first is identifying the distinguisher—any variable that is visible
outside the path pair and can distinguish which path of a pair
has been taken. That is, we should guarantee that a distinguisher

variable will always contain differing values when the two paths
of a pair are executed. Also, the distinguisher variables can take
various forms such as arguments, return values, global variables, or
aliases of them. The identification should be comprehensive to not
miss distinguishers, which is essential to minimize false positives
in the bug-detection phase. Second, inherently the analysis of NDI
is both inter-procedural and path-based, which is susceptible to
path explosion, especially when checking if the callers ever recover
the inconsistencies. To ensure scalability, specific techniques are
required to mitigate the path explosion.

To address the first challenge, we propose a new technique to
precisely identify distinguishers. In particular, we symbolically
execute the two paths of a pair while normalizing the symbols based
on the alias analysis. By modeling the “differing” as a constraint
and leveraging the conservativeness of under-constrained symbolic
execution, we identify symbolized variables as distinguishers that
must contain differing values along the two paths. As for the second
challenge, we develop a technique to limit our analysis scope. The
technique leverages function-level slicing to minimize the scope
for precisely checking the recovery of inconsistencies in the callers.
With the techniques, as confirmed in the evaluation,NDI can detect
security bugs accurately and scalably in real-world projects.

We implementNDI based on LLVM and apply it to both large and
small projects including the OpenSSL library, the FreeBSD kernel,
the httpd server, and the PHP interpreter. The experimental results
show thatNDI detects many new bugs that were missed by previous
tools within 5 hours. Until the paper submission, NDI has detected
51 new bugs in the projects; 46 have been confirmed and 25 have
been fixed by the maintainers. NDI is open-sourced 1 and can be
used to find more bugs in other projects. In summary, we make the
following contributions.

• A new, deterministic approach for detecting security bugs.

We propose non-distinguishable inconsistencies as a deterministic
detection oracle based on an observation that inconsistent security
operations cannot be recovered when there is no distinguisher,
and will lead to a bug. Compared to traditional approaches, the
detection does not require specifications, code-similarity anal-
ysis, or complicated data-flow analysis. The approach can also
generally work for programs of various scales and with custom
code.

• New techniques for detecting non-distinguishable incon-

sistencies. We propose new techniques to overcome challenges
in achieving NDI. The first technique relies on a new under-
constrained symbolic execution to accurately identify all dis-
tinguishers. The second technique mitigates path explosion by
performing a two-stage analysis: scalable scope analysis and pre-
cise recovery analysis. With the techniques, NDI can accurately
and scalably detect security bugs in real-world large projects.

• New bugs on well-tested critical projects.We found 51 new
bugs in well-tested real-world projects of different scales, in-
cluding OpenSSL library, FreeBSD kernel, httpd server and PHP
interpreter. Most of the bugs are security-critical as they may
lead to memory corruption or crashes. We have reported these
bugs; 46 have been confirmed by the maintainers.

1https://github.com/umnsec/ndi

Non-Distinguishable Inconsistencies as a Deterministic Oracle for Detecting Security Bugs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

2 Motivation

Decades ago, researchers detected violations against specifications
as bugs. Given the challenges in specifying rules and understanding
the code semantics, recent research favored cross-checking which
collects similar code snippets and detects deviations among them
as potential bugs. Such an approach does not require specifications
or an understanding of complicated code logic. In this work, we
identify some fundamental limitations with existing approaches
that motivate us to propose NDI. In this section, we present the
limitations with examples and explain why NDI can address them.

2.1 A Motivating Example

Figure 1 shows a wild-pointer-dereference bug in the OpenSSL li-
brary captured by NDI. In this case, function evp_pkey_get_legacy
has inconsistent return states: returning NULL on failure but
a non-NULL pointer on normal execution. The caller chain of
evp_pkey_get_legacy is: lines 18 – 25 . The uses of the return value
of evp_pkey_get_legacy are: lines 31, 36, and 42. Interestingly,
&dh->params is not a dereference of dh, as compilers will optimize
the “dereference” away to directly obtain the address (base + 0x8)
of the variable dh->params. Therefore, the actual critical use of the
return value is on line 42. While the return value itself and pk->lock
are distinguishers, they are never checked against before line 42,
which constitutes a wild-pointer-dereference bug or even arbitrary
read. If the target system marks the zero page inaccessible, the code
will crash on line 42; if the target system allows access on zero page,
such as in some embedded systems without MMU, the bug can turn
into an arbitrary read when attackers control the memory at 0x8.

2.2 Why Existing Approaches Fail

Here, we explain why existing approaches such as data-flow analy-
sis and cross-checking would fail.
Complicated specification and data flows. While in this bug
it could be a traditional wild-pointer dereference, specifications in
general are complicated. From the example, we can see that the
analysis must be inter-procedural and often inter-module, starting
from the source to uses. The original code of the example actually
involves pointer aliases, lengthy and complicated data flows. Ex-
isting data-flow analysis is limited in handling such lengthy data
flows because of aliasing and path explosion.
Hard to find similar cases. If one instead turns to cross-checking,
finding similar code snippets is required. Traditional similarity anal-
ysis may not find enough similar cases. For instance, the wrapper
function evp_pkey_get0_DH_int is only called three times in the
whole OpenSSL project, and only one callsite is followed by a secu-
rity check of the return value ret. That is, the example is actually
violating cross-checking assumption, because the “majority” of
cases are incorrect in this example.

Recent research attempted to improve the similarity analysis
by focusing on only relevant paths and data flows. For example,
FICS [1] uses intra-procedural data dependence graph to represent
relevant code in a fine-grained way. In our example, this bug is
inter-procedural and involves many aliases, so FICS will miss this
bug. IPPO [17] tries to collect similar path pairs and detects in-
consistencies as potential bugs. To reduce false reports, IPPO has
aggressive rules for selecting similar paths. For example, the paths

1 void *evp_pkey_get_legacy(EVP_PKEY *pk) {
2 void *ret = NULL;
3 ret = pk->legacy_cache_pkey.ptr;
4
5 if (!CRYPTO_THREAD_unlock(pk->lock))
6 return NULL;
7
8 if (ret != NULL)
9 return ret;
10 ...
11 }
12
13 DH *evp_pkey_get0_DH_int(const EVP_PKEY *pkey) {
14 if (...) {
15 ERR_raise(...);
16 return NULL;
17 }
18 return evp_pkey_get_legacy((EVP_PKEY *)pkey);
19 }
20
21 static int dh_pkey_ctrl(EVP_PKEY *pkey, int op, ...) {
22 switch (op) {
23 case ASN1_PKEY_CTRL_SET1_TLS_ENCPT:
24 ...
25 return ossl_dh_buf2key(evp_pkey_get0_DH_int(pkey), ...);
26 }
27 }
28
29 int ossl_dh_buf2key(DH *dh, ...) {
30 ...
31 DH_get0_pqg(dh, ...);
32
33 }
34
35 void DH_get0_pqg(const DH *dh, ...) {
36 ossl_ffc_params_get0_pqg(&dh->params, ...);
37 }
38
39 void ossl_ffc_params_get0_pqg(const FFC_PARAMS *d,
40 const BIGNUM **p, ...) {
41 if (p != NULL)
42 *p = d->p;
43 }

Figure 1: A wild-pointer dereference bug found by NDI. It can be an

arbitrary read of the zero page is attacker controllable.

must start at the same block and end at the same block, and have
the same state (i.e., both are on the error path or non-error path).
RID [21] even assumes that the two paths of a pair must have the
same return value and argument value. Such restrictive rules will
clearly exclude the bug because at least the paths have differing
states and return values.

In fact, code-similarity analysis is a hard problem [11, 15, 16, 33,
40, 42]. It is still difficult to achieve high precision. This results in
that bug detection based on similarity is inherently probabilistic.
More importantly, in small or custom projects, similar code snippets
may not exist at all.
Deviations can be legitimate or do not exist. Even if one can
find similar code snippets, deviations may not constitute real bugs.
The reason is that how the code should perform security operations
also depends on its contexts. For example, missing a bound check
inside a function may not be a bug if its callers all have enforced
the check; also, missing a free may not be considered a bug if it
is in a terminating function; Interestingly, bugs might not be the
minority cases. In this example, evp_pkey_get0_DH_int has in total
three uses; it is incorrectly used twice but correctly used only once.

2.3 Why NDI Can Detect the Bugs

The limitations with existing detection approaches motivate us
to propose a new approach—non-distinguishable inconsistency.
If an inconsistent state between two paths cannot be recovered
after the two paths merge and the involved critical variable is used,

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji, & Kangjie Lu

it must be a bug. Unlike existing approaches like FICS [1] and
IPPO [17], NDI does not require similarity analysis. NDI requires
only two conditions. (1) There are two paths in the function that
have inconsistent security operations or states, i.e., returning NULL
in our example. (2) The critical variable involved in the security
operations or states are visible after the two paths merge.

Both conditions are easy to form in functions with branches (e.g.,
error checks). In the example, the checks at line 5 and line 8 of Fig-
ure 1 generate different path pairs, and clearly, the critical variable
ret is visible after the two paths merge, so NDI is applicable to
the case. Although the function evp_pkey_get_legacy has distin-
guishing variables, none of them is checked against; as a result, the
inconsistencies will never have a chance to be recovered. Therefore,
NDI flags them as bugs.

3 Definitions and Overview

3.1 Definitions

Code path and path pair. We define an intra-procedural control
flow within a function as a code path. The code path does not
necessarily start from the function prologue or end at the function
epilogue. We then define path pair as two code paths within the
function that start from a diverging point (e.g., an if statement) and
end at a merging point (e.g., a return statement). For example, in
Figure 1, path-1 with lines 05 - 06 and path-2 with lines 05 - 08 - 09
form a path pair.
Inconsistency. We define inconsistency as a divergent security
state in a path pair. In this project, as examples, we focus on the com-
mon security states, including being NULL, freed, and initialized.
In the above path pair, the inconsistency is that the return variable
ret in path-1 is being NULL while in path-2 is being non-NULL.
Critical variable. We define critical variable as the one involved in
the inconsistent security state or targeted by the security operation
that results in the inconsistency. In this example, it is the return
value of evp_pkey_get_legacy.
Distinguisher. We define a variable as a distinguisher if it must
hold differing values when the two paths are executed and is visible
after the two paths merge, e.g., after the function returns. After the
two paths merge, a distinguisher can be used to tell which path has
been taken. For the above pair, the distinguishers are the return
value ret and pk->lock because they can distinguish the paths.
Recovery of inconsistency. Before the critical variable is used,
e.g., a pointer is dereferenced, its inconsistent state must be con-
sistentized, which we define as recovery of inconsistency. For this
particular case, to be consistent, ret should be nullified for path-2
or assigned with a non-NULL pointer for path-1.
Non-distinguishable inconsistency—the bug oracle. When
there is no distinguisher at all, or distinguishers are all over-
written before the recovery, the inconsistency will become non-
distinguishable; when the critical variable is used, the non-
distinguishable inconsistency becomes a deterministic oracle for a
security bug. In addition, if distinguishers have never been used for
recovery when the critical variable is used, we can also conclude
this is a bug.

3.2 Overview

The goal ofNDI is to identify non-distinguishable inconsistencies as
potential bugs in projects of different scales. Given the source code
of a project, NDI will go through three phases and automatically
report bugs as the output. Figure 2 shows an overview of NDI. In
the following, we introduce each phase.

In the first phase, NDI identifies inconsistent path pairs. Given a
function, NDI first collects path pairs, as defined in §3.1. Each pair
has a diverging point and a merging point. The second step is to
check if a path pair has an inconsistent security state. This state can
be identified by conditional statements (e.g., if statement) or secu-
rity operations (e.g., memory free). The reason is that a conditional
statement often separates a state (e.g., being NULL or not), and a
security operation often changes a state. After that, we can quickly
identify the critical variable which is used in the conditional state-
ment or is targeted by the security operation. Last but not least, we
also need to make sure that the critical variable is visible after the
two paths merge (i.e., it is not defined or destroyed within the path
pair); otherwise, the inconsistent security state would not impact
the following code at all, which is beyond the scope of NDI. By
going through these steps, NDI will finally report the inconsistent
path pairs—path pairs with externally visible inconsistent states.

In the second phase, NDI identifies distinguishers for inconsis-
tent path pairs. This is a challenging and important phase. The
identification should be comprehensive but also precise, which is
a prerequisite for accurate bug detection. Intuitively, any variable
that is visible after the merging point and can distinguish the paths
should be considered a distinguisher. To ensure the comprehensive-
ness and precision, we propose to use a custom under-constrained
symbolic execution together with a path-based alias analysis. Given
a path pair, NDI first performs our own analysis (see §4.2) to nor-
malize variables involved in the path pair. After that, NDI performs
an under-constrained symbolic execution for both paths separately,
which generates constraints for variables in the path pair. For each
variable that is visible after the paths merge, NDI aims to determine
if it must contain different values after the merging point. To this
end, we collect its constraints for both paths and construct an ar-
tificial constraint for that they are the same. All these constraints
are then sent to a solver; if the result is unsatisfiable, we know that
the two paths must result in differing values for the two paths, and
we identify the variable as a distinguisher.

In the third phase, NDI detects non-distinguishable inconsisten-
cies as potential bugs. Clearly, if there is no distinguisher at all, NDI
can quickly report the case as a potential bug. However, in most
cases, there are distinguishers, and NDI needs to analyze the code
following the merging point to determine if the distinguishers are
used to recover the inconsistency. There are two scenarios that NDI
will report as bugs. First, the distinguishers are not used for recov-
ery before the critical variable is used. Second, the distinguishers
are overwritten before recovery. A challenge of handling the two
scenarios is that NDI has to perform an inter-procedural and path-
based analysis, which may suffer from path explosion. To mitigate
the problem, we perform a two-staged analysis: a coarse-grained
function-level program slicing to limit the analysis scope and a
fine-grained recovery analysis to detect bugs. We will discuss the

Non-Distinguishable Inconsistencies as a Deterministic Oracle for Detecting Security Bugs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

1 2 3 Detect non-distinguishable
inconsistencies bugs

Identify inconsistent PPs Identify distinguishers

UC Sym Ex

Different values
in paths pairs

Distinguishers

CFG

CG PEG

SRC LLVM IRCompile

Genera
te

Collect

Find inconsistent
security state

Pre-processing

Paths pairs

Inconsistent
paths pairs

Alias analysis

Exist?
No

Yes

Bug T1: No distinguishers

Bug T3: Distinguishers are overwritten
before recovery

Bug T2: Critical variable is used
before the recovery use of distinguishersCheck non-distinguishable

inconsistencies bugs

Figure 2: Overview of NDI-based detection. PPs = path pairs.

two-staged analysis in §4.3. In the end, NDI generates bug reports
and we manually confirm them.

4 A Bug-Detection System Based on NDI

In this section, we present the design of NDI. First, we list the main
technical challenges below.
C1. The first challenge is to identify path pairs with inconsistent
security states that are visible to the external.
C2. The second challenge is to identify distinguishers of the incon-
sistent path pairs precisely and thoroughly.
C3. The third challenge is to precisely and efficiently detect non-
distinguishable and unrecovered inconsistencies.

In the following subsections, we present our solutions to these
corresponding challenges.

4.1 Identification of Inconsistent Path Pairs

The very first task ofNDI is to identify inconsistent path pairs which
have inconsistent security states. Given a function, NDI traverses
the control-flow graph to collect individual code paths. Note that
this step is intra-procedural, as we will not enter into callees. A code
path is represented as a list of basic blocks. Then, NDI enumerates
the paths to find potential path pairs by checking against the first
condition—starting from a diverging point and ending at a merging
point. The diverging point can be either the function prologue or
a branch statement (typically at the end of a basic block), and a
merging point can be either the function epilogue or the targets of
a branch. By going through the control flow, we can easily collect
such pairs. A more complicated part is to determine that (1) a pair
has an inconsistent security state, and (2) the inconsistent security
state is visible after the two paths merge.

1 dav_error * dav_fs_dir_file_name(const dav_resource *resource,
2 const char **dirpath_p,
3 const char **fname_p) {
4 dav_resource_private *ctx = resource->info;
5 char *dirpath = ap_make_dirstr_parent(...);
6 if (...) {
7 if (dirpath[dirlen - 1] == ’/’) {
8 dirpath[dirlen - 1] = ’\0’;
9 }
10 }
11 if (rv == APR_SUCCESS || rv == APR_ERELATIVE) {
12 *dirpath_p = dirpath;
13 if (fname_p != NULL)
14 *fname_p = ctx->pathname + dirlen;
15 }
16 else {
17 return dav_new_error(...);
18 }
19 return NULL;
20 }

Figure 3: Example function in httpd with inconsistency

Identifying security states and critical variables. A security
state is a program state that is sensitive to security, such as being
NULL, being initialized, or being freed. It is typically represented
with the value of a variable. The state is often manipulated through
a security operation [17, 36], such as memory release, nullification,
initialization, etc. A variable that represents the state or is targeted
by a security operation is considered a critical variable. Following
this definition, we can identify security states and critical variables
through security operations and the values (e.g., NULL) represent-
ing states. For example, Figure 3 shows a function in httpd server,
which includes the initialization security operation against vari-
ables dirpath (line 8) and fname_p (line 14). Therefore, we identify
dirpath and fname_p as the critical variables. Consequently, their
security states become “initialized” after the operations.
Analyzing the visibility of security states. For an inconsistent
security state to take effect (leading to a bug), the critical variable
must be visible after the two paths merge, so that it can be used and
trigger a security bug. Intuitively, to check the visibility, we can
perform a backward data-flow analysis to identify the definition
(e.g., a definition of an integer or allocation of a buffer) of the critical
variable, and make sure it is before the diverging point. However,
in NDI, we have a much easier solution, which is to simply check
that the critical variable is not defined within the path pair, which
suffices to ensure the external visibility.
Precise path-based alias analysis for critical variables. It is
not uncommon that the two paths may perform security operations
against aliases (with different names) of the same pointer. Precisely
identifying the aliases is essential to reduce false positives in incon-
sistent security states. Existing alias analysis does not work well.
While the conservative MayAlias results contain overwhelming
false positives, the precise MustAlias results miss too many true
positives. Therefore, we need a new alias analysis that is precise,
efficient, and also very comprehensive.

Fortunately, we observe that in NDI, since we only target two
paths that start from the same diverging point and end at the same
merging point, an intra-procedural path-based and field-sensitive
data-flow analysis would be efficient and can precisely resolve
the aliases, as such an analysis can precisely keep track of the
propagation of pointers in the granularity of memory fields. Note
that if a path pair does not start from the function prologue, we
will also apply our analysis to the paths from the function prologue
to the start of the path pair to capture aliases generated along the
paths. During this analysis, if we encounter a function call, we will
not track into the callee but use the MustAlias results from the
existing alias analysis to balance the accuracy and efficiency.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji, & Kangjie Lu

Identifying inconsistent path pairs. With the alias results, we
then propose a method to identify inconsistent path pairs. Such
pairs must have inconsistent security states. Inconsistent security
states may be generated in different ways, so we have two criteria
to determine inconsistent security states. First, if a security oper-
ation (such as initialization or memory release) against a specific
variable appears in only one path but not the other, we identify an
inconsistent state, and the path pair is inconsistent. Second, since
a security state may not be generated through a security opera-
tion, but represented by values (e.g., NULL vs. non-NULL), we also
perform a value-based analysis. In the current implementation, we
focus on NULL pointers. This way, we identify path pairs with
inconsistent security states.

4.2 Identification of Distinguishers

One of the key challenges of NDI is identifying distinguishers—
variables that tell which path of a pair has been taken, and the vari-
ables should be visible outside the pair. To the best of our knowledge,
this has not been studied before. There are often many variables
involved in a pair, and most of them may or may not be differing
after the two paths merge. Determining which variables must be
differing is a challenge. Moreover, the analysis should be precise
and comprehensive, which is essential to minimize false positives
and false negatives in bug detection.

We reason that identifying distinguishers is to determine
whether a variable (that is visible outside the path pair) must result
in differing values at the end of the path pair. Therefore, if a variable
may result in the same value, it cannot be identified as a distin-
guisher, as in this case the callers will still not be able to distinguish
the paths. Based on the reasoning, we propose to use a tailored
under-constrained symbolic execution to reliably identify distinguish-
ers. The under-constrained symbolic execution will not only help
determine the possible values of a variable, but also exclude infeasi-
ble paths to reduce false positives. Also, it will not suffer from path
explosion because it only targets two intra-procedural paths.
Under-constrained symbolic comparison with extension.

The idea is that given a path pair and a variable, we can sym-
bolize the variable into two different symbols (e.g., 𝑉1 and 𝑉2) for
the two paths and symbolically execute the two paths separately
to collect two sets of constraints. By adding an artificial constraint
that 𝑉1 == 𝑉2 and sending all these constraints about the variable
to a solver [23], we can get a result which is either SAT or UNSAT.
If it is UNSAT, we can confidently conclude that 𝑉1 always differs
from𝑉2, and the variable is a distinguisher. The confidence is based
on the conservativeness of under-constrained symbolic execution.
While this is intuitive, we still need to address several problems.

Normalizing symbols by extending path pairs. Variables in ques-
tion must be translated into symbols before symbolic execution
for a path pair. Simply translating every variable with a different
name on a path to a new symbol is not precise because memory
can be pointed to by aliases with different names, and variables
with different names may also have the same values. To address
this challenge, we propose the path-pair extension method. This
method will extend both paths in the inconsistent path pair from
the diverging point to the function prologue and generate new path
pairs, which we refer to as extended path pairs. The paths in one

extended path pair will share the same path from the prologue to
the diverging point, and we refer to it as a pre-path as this path is
executed before the inconsistent path pair. Note that one inconsis-
tent path pair can generate more than one extended path pairs, as
there may exist more than one pre-paths before the diverging point.
By starting the symbolic execution from the function prologue, the
same variables with different names can be recognized, and the
translation from variables to symbols becomes definitive. On the
other hand, we can also collect more constraints for variables. As a
result, the identification of distinguishers will become more precise.

Take an inconsistent path pair in Figure 3 as an example. We
have a path pair: path-1 11 - 12 - 13 - 14 - 19 and path-2 11 - 16 -
17 . From the prologue to the diverging point 11 , the function
dav_fs_dir_file_name has three pre-paths: 04 - 05 - 06 - 11 , 04 - 05 -
06 - 07 - 11 and 04 - 05 - 06 - 07 - 08 - 11 . By composing the pre-paths
with the inconsistent path pair, we will generate three extended
path pairs respectively.

Note that when identifying the distinguishers of the inconsistent
path pair with multiple extended path pairs, our policy is that as
long as a variable is a distinguisher for one extended path pair, we
deem the variable as a distinguisher. That is, the variable does not
have to be a distinguisher for all extended path pairs.

Variable selection and symbolization. Only variables that can be
potential distinguishers should be symbolized, so we need selec-
tion criteria. To become a distinguisher, a variable should satisfy
the following two conditions. First, the variable must be defined
before the merging point, i.e., the variable is defined on the pre-
path or passed in as a global or argument. Second, the variable
must be used in the inconsistent path pair (including the diverging
point) to generate differing values. After selecting the candidate
distinguisher variables, for each of them, we will symbolized it into
two different symbols on the two paths of a pair and perform the
symbolic comparison.
Constructing and solving constraints. To determine if a vari-
able, say V, must contain differing values after themerging point of a
path pair, we need to collect and construct constraints for a symbol-
ized candidate distinguisher. To make sure that the unsatisfiability
is resulted from the differing values of the candidate distinguisher,
instead of from the path infeasibility, we first symbolically execute
the two paths separately to make sure they both are feasible. Path
pairs with infeasible paths will be directly discarded.

Given a candidate distinguisher, V of an extended path pair, we
symbolize it into two different symbols for the two paths, e.g.,
𝑆𝑦𝑚𝑏𝑜𝑙𝑉1 and 𝑆𝑦𝑚𝑏𝑜𝑙𝑉2 . On the two paths, we then collect con-
straints related to V separately. After that, we further construct an
artificial constraint, 𝑆𝑦𝑚𝑏𝑜𝑙𝑉1 == 𝑆𝑦𝑚𝑏𝑜𝑙𝑉2 . All these constraints
are put together and then sent to a solver. We will receive a result
from the solver, either SAT or UNSAT. If the result is UNSAT (unsolv-
able), we can tell that𝑉1 and𝑉2 must differ, given the conservative-
ness of under-constraint symbolic execution. In this case, we deem V
as a distinguisher. This way, NDI precisely identifies distinguishers
for the inconsistent path pair.
An example. To demonstrate the process of identification, we
here to prove that fname_p in Figure 3 is a distinguisher over the
extended path pair: the pre-path is 04 - 05 - 06 - 11 - 12 , and the in-
consistent path pair is path-1 13 - 14 - 19 and path-2 13 - 19 . First of

Non-Distinguishable Inconsistencies as a Deterministic Oracle for Detecting Security Bugs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

all, fname_pwill be symbolized to 𝑆𝑦𝑚𝑏𝑜𝑙𝑣1 on path-1 and 𝑆𝑦𝑚𝑏𝑜𝑙𝑣2
on path-2. On path-1, we collect the constraint 𝑆𝑦𝑚𝑏𝑜𝑙𝑣1 != 𝑁𝑈𝐿𝐿

because of the check on line 13. On path-2, we collect the constraint
𝑆𝑦𝑚𝑏𝑜𝑙𝑣2 == 𝑁𝑈𝐿𝐿 also because of the check on line 13. Finally, we
generate an artificial constraint, 𝑆𝑦𝑚𝑏𝑜𝑙𝑣1 == 𝑆𝑦𝑚𝑏𝑜𝑙𝑣2 , and send
all those constraints to solver. It is obvious that the result of the
solver is UNSAT, i.e., 𝑆𝑦𝑚𝑏𝑜𝑙𝑣1 can not equal to 𝑆𝑦𝑚𝑏𝑜𝑙𝑣2 . Therefore,
we conclude that fname_p is a distinguisher of the path pair.

4.3 Two-Staged Analysis for Inconsistency

Recovery

The goal of NDI is to detect non-distinguishable or unrecovered
inconsistencies as potential bugs, non-distinguishable inconsisten-
cies indicate that the recovery of inconsistency is impossible, or
the recovery does not happen before a use of the critical variable.
Therefore, if an inconsistent path pair does not have any distin-
guishers, we can directly conclude that it is a bug. Otherwise, we
will need to analyze possible recoveries of the inconsistency after
the two paths merge. The analysis is to check (1) whether the dis-
tinguishers are overwritten, so the inconsistency clearly becomes
non-distinguishable, or (2) whether the recovery is not performed
at all before the use of the critical variable.

We find the recovery analysis challenging because it requires
an inter-procedural, path-based, and field-sensitive analysis, which
often suffers from path explosion or imprecision. To address this
challenge, we perform a two-staged analysis. We observe that, given
a path pair, typically there is only one critical variable, but there are
multiple distinguishers. More importantly, the use of the critical
variable is a requirement to form a bug. If the critical variable is
not used at all, we do not need to analyze the distinguishers or
recovery. Therefore, we propose to first leverage the uses of the
critical variable to quickly filter out irrelevant code. In particular,
in the first stage, we perform an efficient coarse-grained function-
level program slicing against critical variables (not distinguishers) to
limit our analysis scope; only functions that are along the paths from
the merging point to the use of the critical variable are within the
slice; all other functions are filtered out, which ensures scalability.
In the second stage, we perform a fine-grained analysis against
both critical variables and distinguishers (not targeted in the first
stage), to precisely identify if distinguishers are used for recovery.
Coarse-grained function-level program slicing. In the first
stage, we perform a coarse-grained function-level program slicing
over critical variables. To improve the efficiency, the coarse-grained
analysis is inter-procedural, flow-insensitive, and field-insensitive.
The intuition of the first stage is that checks of distinguishers can
only recover inconsistency before the uses of the critical variable.
Therefore, if we can identify function paths that start from the
function with inconsistency and end at the function with the uses
of the critical variable, we can just focus the precise analysis of the
second stage on the function paths, which can effectively reduce
the analysis scope.

To locate the uses of a critical variable roughly but quickly, we
need to address a few problems. For aliasing, we adopt the conser-
vative MayAlias results. Note that the analysis is only applied to the
critical variables, but not distinguishers. To balance the efficiency

and accuracy, the coarse-grained analysis adopts a k-limiting anal-
ysis, which is commonly used by static analysis [18, 19, 29, 41].
Moreover, we use type analysis [24, 31] to find indirect-call targets.
Fine-grained recovery analysis. In the second stage, NDI per-
forms fine-grained analysis within the program slice to determine
whether distinguishers are used to recover inconsistencies. This
analysis is an inter-procedural, path-based, flow- and field-sensitive
one. Unlike the first stage, here we apply the precise analysis against
both critical variables and distinguishers. We perform our precise
analysis on each critical variable again because the analysis of criti-
cal variable in the first stage is imprecise. After that, we perform
precise analysis against distinguishers to collect all possible re-
coveries. Recoveries are those checks (e.g. if statement) involving
distinguishers or their aliases. NDI will report a bug if no recovery
is performed before the uses.
An example. Now we use an example from FreeBSD, shown in
Figure 4, to explain the two-staged analysis. This is a NULL pointer
dereference identified by NDI. The return value of the function
ocs_hw_qtop_parse in Figure 4 will be NULL on allocation failure
of qtop on line 8. On the other path, ocs_hw_qtop_parse will re-
turn a pointer qtop which could never be NULL because of the
check on line 6. In function ocs_hw_setup, the return value of
ocs_hw_qtop_parse is assigned to hw->qtop, and there is a deref-
erence of it after that without any check, which leads to a NULL
pointer dereference bug.

1 ocs_hw_qtop_t *ocs_hw_qtop_parse(ocs_hw_t *hw, ...)
2 {
3 ocs_hw_qtop_t *qtop;
4 ...
5 qtop = ocs_malloc(...);
6 if (qtop == NULL) {
7 ...
8 return NULL;
9 }
10 qtop->os = hw->os;
11 ...
12 qtop->alloc_count = OCS_HW_MAX_QTOP_ENTRIES;
13 qtop->inuse_count = 0;
14 return qtop;
15 }
16
17 ocs_hw_rtn_e ocs_hw_setup(ocs_hw_t *hw, ...)
18 {
19 hw->qtop = ocs_hw_qtop_parse(hw, hw->config.queue_topology);
20 hw->config.n_eq = hw->qtop->entry_counts[QTOP_EQ];
21 ...
22 }

Figure 4: An example for explaining two-staged analysis.

In the first stage, we apply the coarse-grained analysis against
the return value of function ocs_hw_qtop_parse, which identifies
hw->qtop on line 19 in Figure 4 as its alias variable. As our anal-
ysis is field-insensitive, the analysis will further collect all field
variables against hw->qtop like hw->qtop->entry_counts. Next, we
identify the uses of the critical variable hw->qtop, which is a load
operation on line 20. Finally, we determine the relevant call path
is ocs_hw_qtop_parse—ocs_hw_setup, and our program slice only
contains these two functions.

In the second stage, we perform a precise inter-procedural anal-
ysis against the return value of ocs_hw_qtop_parse and all its dis-
tinguishers. In our example, we will collect distinguishers on the
inconsistent path pair: path-1 06 - 08 and path-2 06 - 10 - 14 . The-
ses distinguishers include qtop->os, qtop->alloc_count, and the

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji, & Kangjie Lu

return value itself since they hold differing values on different paths.
After building all alias set against each distinguisher, we further
identify possible checks which could recover the inconsistency. In
this example, there is no such a recovery, so NDI identifies it as a
non-distinguishable inconsistency and reports it as a bug.
Reporting and confirming bugs. Our bug report takes two for-
mats. If there is no distinguisher,NDIwill simply report the function
name, the inconsistent path pairs along with the critical variable.
If there are distinguishers, NDI will first report the function with
inconsistency, the function with the use of the critical variable and
the path between them on the call graph. In addition, it will report
the critical variable and the use of the critical variables as supple-
mentary information. We then manually check the path between
the merging point of the path pair and the use of the critical variable
to make sure there is no recovery and confirm the path is feasible.
After confirmation, we report bugs to maintainers.

5 Implementation

We have implemented NDI based on LLVM 15, including a pass
that translates IR into graph expressions, a pass that collects paths
on functions and inconsistent path pairs, a pass that performs a
path-based value flow analysis, a pass that collects distinguishers
for inconsistent path pairs, and finally a pass that detects bugs
related with non-distinguishable inconsistencies. The rest of this
section presents important implementation details of NDI.

5.1 Data Structures and Representations

A path is represented with an ordered list composed of pointers to
basic blocks. NDI then represents an inconsistent path pair with
a combination of two paths. Furthermore, NDI represents critical
variables and distinguishers with an unordered set composed of
pointers to variables. Also, NDI uses a call graph to represent the
searching scope of the two-staged analysis. This call graph consists
of functions collected in the coarse-grained stage, and we use the
number of nodes in the call graph to represent the scale of the
searching scope.

5.2 Implemented Security States/Operations

To demonstrate how NDI works, we focus on three inconsistencies:
memory release, NULL state, and initialization for the following
reasons. (1) These inconsistencies exist widely in large systems and
are often misused by programmers. (2) These inconsistencies can
lead to severe security impacts such as memory corruption and
denial-of-service. (3) Traditional analysis techniques such as fuzzing
cannot easily find such bugs, which may locate in deep code paths.
However, note that the types of inconsistency are not limited; NDI
can be further extended to support more types of inconsistencies,
such as boundary check, refcount, and lock/unlock.
Release inconsistency. Release inconsistency refers to that a
variable is released on one path but not on the other. The release
operation can be identified through deallocator functions, therefore
to identify release inconsistency, the very first task is to collect
deallocators. On each system, we manually identify the 10 most
commonly used deallocators before collecting functions with re-
lease inconsistency. For collected functions, we take such variables
whose values are released by deallocators as critical variables.

NULL state inconsistency. NULL state inconsistency refers to
that in an inconsistent path pair, one path returns a non-NULL
pointer while the other returns NULL. In practice, we will first
collect functions with pointer-type return values. For each incon-
sistent path pair of these functions, we further confirm whether a
return value equals NULL on one path and does not equal NULL on
the other through under-constraint symbolic execution. The critical
variable of NULL state inconsistency is exactly the return value
itself. This NULL state inconsistency can also be easily extended to
support other “invalid” pointers (e.g. a wild pointer composed of
an error code).
Initialization inconsistency. Initialization inconsistency refers
to that in an inconsistent path pair, a variable is initialized on one
path but not on the other. In practice, for each inconsistent path
pair, we first collect variables which are assigned on one path but
remain unchanged on the other. Moreover, NDI supports other
methods to identify initialization inconsistency. For instance, one
can use function-based initializers like memset on one path but not
on the other to indicate an initialization-inconsistent state.

5.3 Optimizations for Distinguisher

Identification

§4.2 shows that NDI uses under-constraint symbolic execution to
determine distinguishers. However, in the following situations,NDI
can quickly decide the distinguishers, without the need for under-
constraint symbolic execution, which improves performance.
Constant values. Sometimes the differing values of a distin-
guisher on two paths are constants, e.g. error code ENOMEM andNULL.
In this case, NDI can simply compare these constants through arith-
metic calculations without symbolic execution. For instance, once
we identify that a variable is assigned with two different constant
values on the pair, the variable can be regarded as a distinguisher.
Simple conflicting constraints. If constraints against a variable
v are obviously unsatisfiable, e.g., one constraint is “v == NULL”, and
the other constraint is “v != NULL”, we can immediately conclude that
the constraints against v are unsatisfiable. Such cases are actually
very common in the code. When identifying distinguishers, as
explained in §4.2, we will build a constraint set against a variable.
Before sending the set to the solver, we will quickly check whether
there exist two constraints whose operands could be the same, but
the predicate is inverse. Once we identify them, the variable is
regarded as a distinguisher without symbolic execution.

5.4 Two-staged Analysis

Uses of critical variables. The first problem in two-staged anal-
ysis is to define what operations can be identified as uses of critical
variables. It is obvious that STORE or LOAD operations on alias vari-
ables of the critical variable should be identified as uses, but we
argue that the GEP operation should not be identified as uses, since
this operation is just an address computation and will not cause
a real security impact. However, this GEP operation may generate
a wild pointer to an illegal address; therefore, STORE or LOAD oper-
ations on this wild pointer may lead to real bugs and should be
regarded as uses. For instance, in our motivating example, there
exists a wild pointer &dh->params in the function DH_get0_pqg of

Non-Distinguishable Inconsistencies as a Deterministic Oracle for Detecting Security Bugs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Figure 1. The wild pointer results from a GEP operation on an alias
variable dh and will not cause any real security impact. But once
we detect a LOAD operation on the wild pointer &dh->params on line
42 in the function ossl_ffc_params_get0_pqg, we identify it as a
use of the critical variable and further detect a bug.

Besides this, in some cases, function calls are also regarded as
uses for critical variables. Though the passing critical variables
itself will not lead to any security impact, we notice that some
function calls, such as calling memcpy, are bound to cause severe
problems as long as an alias variable is passed in without recovery.
Therefore, we maintain a function list to record these functions. If
an alias variable is passed into a function on the list, we will regard
it as a use of the critical variables.
K-limiting analysis. In §4.3, we mentioned that NDI adopts a
k-limiting method to form the entire scope of the coarse-grained
stage analysis. Here we describe two implementation details. First,
we need to decide a proper value for k. NDI currently takes k =
2 to balance accuracy and efficiency. In practice, if we take k =
1, NDI will miss many real bugs as many possible uses of critical
variables are emitted. When k > 2, the two-staged analysis is less
precise and will generate many false positive bug reports. Note
that all the previous works [18, 19, 29, 41] will limit k to at most 2,
which supports our choice for k. Second, we need to handle indirect
calls. NDI adopts type analysis [24, 31] to match indirect calls with
corresponding functions. However, we find that if the types are
too general, the matching process will become very imprecise. To
alleviate this problem, NDIwill only resolve an indirect call when it
has at least three arguments because such indirect calls can typically
match only a few targets, and the results are very precise.

6 Evaluation

We evaluate NDI against well-tested and popular real-world pro-
grams, including OpenSSL library 3.0 (commit 21095479c0)2, FreeBSD
kernel 123, httpd server (commit 9dbdc1e517)4 and PHP interpreter
(commit ea62b8089a)5. The experiments are performed on a server
with 256GB RAM and 32-core Intel E5-2670 CPU.

6.1 Analysis Performance

Table 1: Performance of NDI.

Targets OpenSSL FreeBSD httpd PHP

Num of Modules 886 1,483 189 376
Lines of Code 500k 16m 300k 1m
Analyzing Time 1h 2h 30m 1h30m
Peak Memory Usage 12.9G 28.1G 2.1G 27.3G

The evaluation results show that NDI can effectively analyze
different-sized programs. Specifically, Table 1 shows the analyzing
time, the project size and the peak memory usage of each program.
Overall, we identify more than 4K functions with inconsistencies,
80K inconsistent path pairs and collect more than 10K distinguish-
ers in total; the average searching scope of NDI is less than 100
functions with the help of scoping in the two-staged analysis.
2https://github.com/openssl/openssl
3https://github.com/freebsd/freebsd-src
4https://github.com/apache/httpd
5https://github.com/php/php-src

6.2 Bug Findings

NDI generates 86 bug reports, and it takes 70 person-hours in total
to manually check and report them. Most time was spent on a small
number of challenging cases that involve complicated code. For the
majority of cases, the manual confirmation is quick because NDI
provides a deterministic oracle, and the analysis scope is typically
small. As shown in Table 2, we finally confirm 35, 7, 6 and 3 valid
bugs from OpenSSL library, FreeBSD kernel, httpd server, and PHP
interpreter, respectively.

Table 2: An aggregated list of bugs detected by NDI.

OpenSSL FreeBSD httpd PHP

Release inconsistency 18 3 0 0
Null state Inconsistency 14 4 1 3
Initialization inconsistency 3 0 5 0
Total 35 7 6 3

Most of these bugs can lead to security issues. Specifically, there
are 8 use-before-initializationmemory errors, 2 wild pointer derefer-
ences (they can turn to arbitrary memory access if attackers control
specific memory content on embedding systems without MMU),
23 null pointer dereferences, 14 memory leaks and 4 undefined
behaviors. We have reported all of them to project maintainers.
Until the submission of the paper, 46 bugs have been confirmed by
maintainers, and 25 of them are already fixed in the latest version.
Bugs are confirmed by maintainers through interactions on pull
requests, issues, bugzilla and mailing. The detailed list of bugs is
available in Appendix [27]. Note that many bugs in the list share
the same bug ID since we report similar bugs as a batch in one
report.
Bugs detected with multiple inconsistencies. Interestingly,
several bugs can be detected with more than one inconsistency.
There is 1 bug that can be detected by both release inconsistency
and NULL state inconsistency, while there are 4 bugs that can be
detected with release inconsistency and initialization inconsistency.
Those bugs are categorized in the Table 2 by relevance. Note that
although many functions may have different inconsistencies, not
all of them can lead to the same bug. That is because NDI will iden-
tify different inconsistent path pairs and collect different critical
variables over different inconsistencies; therefore, it will generate
different program slices and finally report different bugs.
Security impact. NDI identifies 5 types of bugs: memory leak,
NULL pointer dereference, wild pointer dereference, use before
initialization and undefined behavior. The first four types, i.e., 92.2%
of detected bugs, can cause different security impacts. 23 bugs and
2 bugs would cause NULL pointer dereference and wild pointer
dereference, respectively, and those bugs would lead to Denial-
of-Service (DoS) when triggered. 14 bugs would cause memory
leaks, and they could cause memory exhaustion and DoS if they are
triggered repeatedly. 8 bugs would cause use-before-initialization
(UBI) memory errors, and the security impact of those bugs depends
on what values the variables would hold without initialization.

We then use a fixed bug as a case study of a common
security impact of the found bugs. In OpenSSL, the function
X509_STORE_new returns NULL on a failure. However, in the func-
tion create_cert_store, the return value of X509_STORE_new is

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji, & Kangjie Lu

used without NULL check. Therefore, it will lead to a NULL-pointer-
dereference bug. If the bug is triggered, OpenSSLwill crash and deny
all the requests. This bug was identified by NDI; we reported the
bug, and it has subsequently been fixed in the latest version.

Table 3: Precision of distinguisher identification and effectiveness

of scoping. I. Dist = Number of identified distinguishers, A. Dist =
Number of all distinguishers,W/OS. = # of functions to analyzewith-

out scoping, W/ S. = # of functions to analyze with scoping.

Name I. Dist A. Dist W/O S. W/ S.

DSO_free 4 7 43 38
evp_pkey_get_legacy 5 7 52 35
EVP_PKEY_copy_parameters 5 7 1,006 298
apreq_param_make 1 1 35 35
ocs_hw_qtop_parse 2 3 2 2
mock_srv_ctx_new 1 1 12 12
add_any_filter_handle 3 7 3 0
phpdbg_get_color 1 2 10 2
zend_arena_alloc 2 2 19,466 0
iwn_cmd 3 3 60 0

6.3 Identification of Distinguishers

To evaluate the accuracy of the identification, we first manually
analyze the collected distinguishers. The corresponding results
are shown in Table 3, column I. Dist (identified distinguishers)
and A. Dist (all distinguishers). From such results, we find that
every distinguisher identified by NDI is correct. This benefits from
our precise under-constraint symbolic comparison. However, NDI
is not complete in identifying distinguishers; In particular, NDI
completely identifies distinguishers in 4 out of 10 cases. For the
remaining 6 cases,NDI is not complete bymissing a few distinguish-
ers. Overall, NDI can identify 27 of 40 distinguishers, i.e., 67.5%.
This is because NDI only performs intra-procedural distinguisher
identification, and some distinguishers are manipulated by callees,
thus can only be identified by inter-procedural analysis.

Interestingly, those missed distinguishers do not lead to any false
positives in the final bug detection. This is because although many
distinguishers can distinguish inconsistent path pair, only a few of
them are actually used to recover the inconsistency. The actually
used ones are typically simple ones (e.g., return values) and do not
involve nested calls, so are captured by NDI.

For instance, in the function evp_pkey_get_legacy, we have
mentioned that pk->lock should be a distinguisher in §2.1. pk->lock
is not considered a distinguisher in NDI since pk->lock may not
be always differing on the two paths from the intra-procedural
analysis perspective, but missing the distinguisher pk->lock does
not cause any false positive, because the actual used distinguisher
is the return value of evp_pkey_get_legacy instead of pk->lock.

In general, we find that most distinguishers that are used for
recovery can be detected intra-procedurally, which means our iden-
tification analysis is accurate enough in practice.

6.4 Effectiveness of Scoping

To evaluate the effectiveness of scoping (i.e., the first coarse-grained
stage in the two-staged analysis), we disable it to make the compar-
ison. With the scoping disabled, we directly perform the recovery

analysis against critical variables and distinguishers. The analysis
starts from the merging point of an inconsistent path pair. Note
that in this analysis, we still need to collect alias variables over dis-
tinguishers and critical variables, and those variables are collected
through the inter-procedural, path-based, flow- and field-sensitive
analysis in the fine-grained stage.
Comparison with and without scoping. The results with-
out scoping are on column W/O S., and the results with scoping
are on column W/ S. in Table 3. The result shows that scoping
plays an important role in limiting the analysis scope for the pre-
cise recovery analysis. For instance, the scope of the function
EVP_PKEY_copy_parameters would be more than 1k without scope
analysis. By limiting the scope to less than 300, we can performmore
precise alias analysis and find a bug in the ssl_set_cert_and_key
function. Overall, the scoping reduces the number of functions
to analyze by 98.0%. Particularly, in 3 of 10 cases, we reduce the
scope size to zero; therefore, the fine-grained analysis stage can
be completely omitted, making our analysis process much more
efficient. Since there is no use at all, they would not lead to bugs.

6.5 Comparison with Most Related Tools

6.5.1 Comparison with Cross-Checking Tools. In this section, we
compare NDI with two state-of-the-art similarity-based bug detec-
tion tools that are most related to NDI and open-sourced: IPPO [17]
and Crix [20]. IPPO is a closely related work that is based on the
similarity of paths. It identifies bugs by checking inconsistent se-
curity operations on two similar code paths. Crix detects bugs by
checking similar code slices. It models and cross-checks the seman-
tics of conditional statements in the peer slices of critical variables.
First, we focus on how many bugs found by NDI can also be de-
tected by them. In this evaluation, We feed the same bitcode files
of all tested programs to the tools and compare ours with the bugs
found by them.

Table 4: Comparison with state-of-the-art tools, in terms of bugs

detected on all programs.

OpenSSL httpd PHP FreeBSD

NDI 35 6 3 7
IPPO 1 0 0 1
Crix 0 0 0 1

Bugmissed by cross-checking. As shown in Table 4, only 3 bugs,
i.e. 5.9% bugs, can be detected by cross-checking tools. And to make
more clear comparison, we analyze bugs found in OpenSSL to prove
that many bugs are theoretically unrecognizable by cross-checking.
We choose OpenSSL because it is moderate and well organized, mak-
ing the result more convincing. On OpenSSL, we manually collect
all the functions with inconsistency or their wrappers, and com-
pute the times they are misused. Those data are shown in Table 5.
From Table 5 we notice that the misused functions in 26 of 35 bugs
(i.e., 74.2%) have a misuse rate of more than 50%; therefore, they
can not even be detected in principle by cross-checking because
the inherent assumption of cross-checking—buggy code pieces are
minority—just does not hold for them. Even worse, for some mis-
used functions, there may be no correct use at all. For instance, the

Non-Distinguishable Inconsistencies as a Deterministic Oracle for Detecting Security Bugs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

function DSO_free contains a release inconsistency, i.e., the argu-
ment of DSO_free will be released on the normal path but not on
the error paths. However, all 14 uses are buggy because they do not
check the distinguishers of DSO_free at all. Finally, the inconsis-
tency becomes non-distinguishable and causes memory leak bugs.
Those bugs have been confirmed by the maintainers.

Table 5: Total Uses and Misuses about the targeted function in

OpenSSL. N1 = Total Uses, N2 = Misuses, R = N2 / N1 * 100%. Cross-

checking can only detect bugs when misuses are minority.

Function Name N1 N2 R

DSO_free 14 14 100.0%
evp_pkey_get0_DH_int 3 2 66.6%
evp_pkey_get_legacy 18 13 72.2%
evp_pkey_get0_RSA_int 4 2 50.0%
OCSP_basic_add1_status 5 1 20.0%
X509V3_add_value 22 4 18.1%
EVP_PKEY_copy_parameters 18 2 11.1%
BN_bn2hex 9 1 11.1%
X509_STORE_new 21 1 4.7%

Trade-offs between NDI and cross-checking. NDI is not in-
tended to replace cross-checking tools but to complement them. In
general, both should be applied to broadly detect bugs in a target
program. However, there are a few factors that affect the perfor-
mance of NDI and previous tools, and users may consider them to
prioritize the tools.

First, the scale of the program. NDI tends to outperform previ-
ous cross-checking tools on smaller programs. As mentioned in
§2.2, cross-checking tools require a substantial number of similar
code pieces for a statistical analysis. Smaller projects may not have
enough similar code pieces. For instance, in the smallest project
we tested, the httpd server, NDI finds 6 bugs; however, IPPO and
Crix find 0 bugs. Second, the customization level of the program. A
program with extensive custom code (e.g., to support special func-
tionalities) may prioritize NDI. Even large programs such as the
Linux kernel contain unique code logic to support custom features;
wemay not find enough similar code pieces for such code, and cross-
checking would fail. Third, the development process. A program that
is collaboratively developed by many programmers should also ap-
plyNDI. In this scenario, the designer of an API and the users of the
API may have different expectations. An improperly-designed API
may be frequently misused, but could be missed by cross-checking
because the misuses are not minority cases. For example, in Table 5,
most misused functions (74.2%) have a misuse rate of more than
50%, thus have been missed by cross-checking.

To summarize, a user may prioritize NDI in detecting bugs when
the target program is small, customized, or collaboratively devel-
oped, and apply NDI together with existing cross-checking tools
for other programs.

6.5.2 Comparison with Other Tools Detecting the Same Types. In
§6.5.1, we compare NDI with the most related tools in terms of
detection approach. In this section, we additionally compare NDI
with state-of-the-art tools that detect the same bug types but may
adopt a different detection approach. In particular, we select FICS [1]
and IncreLux [44]. The current implementation of NDI can detect

three types of bugs: memory leak, illegal pointer dereference, use
before initialization (UBI). FICS can detect all the three types. It
uses a machine learning–based bug detection technique that learns
(correct) code patterns from the codebase and detect violations as
bugs. IncreLux is a most recent work that focuses on detecting UBI
bugs. It tracks the code paths to check whether a variable is fully
initialized upon uses.

Table 6: Comparison with state-of-the-art tools detecting the same

types.

NDI FICS IncreLux

Memory leak 14 0 0
Illegal pointer dereference 25 1 0
Use before initialization 8 4 3

Bug missed by compared tools. As shown in Table 6, only 8
bugs, i.e. 15.6% of bugs, found by NDI can be detected by tools
detecting the same types. Particularly, although IncreLux is special-
ized for detecting UBI bugs, it can only detect 3 out of 8 UBI bugs
found by NDI. Though FICS claims to detect bugs with one-to-one
inconsistency, the inconsistency has to be small enough to indicate
a bug, which is not a must for NDI. Furthermore, IncreLux detects
UBI bugs through type-qualifier analysis; however, the specifica-
tions of IncreLux are summarized based on a specific system (Linux
kernel). Therefore, it does not perform well on other systems. On
the other hand, we also collected the 8 bugs found by the compared
tools from their papers. We found that NDI can rediscover 3 of
them. We will explain why NDI misses other bugs in §6.5.3. The
evaluation results show that (1) NDI and existing detection tools
are complementary to each other, and (2) NDI finds more bugs in
the tested programs.
Comparison on scalability. An important feature of NDI is that
it localizes the potential buggy code (intra-procedural path pairs
with inconsistencies) and focuses the analysis to the limited scope.
Such a feature helpsNDI avoid analyzing lengthy control/data flows
and thus improve the scalability. As shown in Table 1, NDI is able
to finish the detection from 30 minutes to 2 hours. For instance,
FreeBSD contains 16 million lines of code, and NDI finished the
detection within 2 hours, which is considered scalable.

In comparison, FICS and IncreLux may suffer from scalability
because FICS adopts a machine-learning approach, and IncreLux
has to keep track of object life-cycles from the beginning (i.e., allo-
cation sites). In particular, we found that IncreLux consumes too
much RAM; it fails when analyzing OpenSSL because of huge RAM
usage (more than 250GB). NDI, however, completes all analysis
with at most 30GB memory. Further, their detection costs a much
longer time. For instance, FICS spends almost one week analyzing
the programs, and takes about four days to analyze FreeBSD kernel
alone. IncreLux spends about two days analyzing all programs, and
takes one day to analyze the FreeBSD kernel. NDI, however, only
spends about five hours completing all analysis, and two hours
for FreeBSD. Overall, NDI outperforms these tools with a localized
analysis technique that requires a much shorter detection time and
consumes much less memory.

6.5.3 False Negatives To analyze false negatives, we first try to
collect bugs (on the tested programs) found by compared tools. We

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji, & Kangjie Lu

found it is impractical to collect the bugs by re-running the tools
on the programs, because either they fail to run on some programs
or there are too many false positives (e.g., IPPO has thousands of
reports). Therefore, we collect the bugs from their papers. In total,
we were able to collect 18 bugs. We first manually look into the
bugs and found that, in theory, 14 of them can be detected by NDI’s
approach. As there are limitations with our implementation of NDI,
we then apply NDI to the programs to see how many of them can
be rediscovered in practice. It turns out that NDI can rediscover 8
of them, i.e. 44.4% of bugs. In the following, we look into the causes
of the false negatives and summarize them.
No recovery after checks. NDI currently treats checks as a re-
covery of inconsistencies. However, checks over distinguishers are
only a necessary condition of the recovery operation. NDI will not
report a bug even if no actual recovery operation is performed after
the checks. For instance, in PHP, IPPO finds a bug where the vari-
able preload_scripts in the function accel_preload is released on
one path but not on the other. However, NDI misses it because the
return value of accel_preload, which is a distinguisher, is checked
before uses of preload_scripts. Five false negatives fall in this
category. As this is an implementation issue, it can potentially be
eliminated in the future.
No inconsistency. Some bugs may not contain an inconsistency;
therefore, NDI can not detect them. For instance, in OpenSSL, FICS
finds a bug in cms_RecipientInfo_pwri_crypt where the variable
ec->key is not released within the whole function. Since there is
no release inconsistency, NDI cannot detect it. Four cases fall in
this category. This is a problem with the NDI approach, and thus
cannot be eliminated.
No critical variable uses. NDI focuses more on the detection pre-
cision and will not report uncertain bugs. For instance, FICS identi-
fies a bug in OpenSSL that the return value of BN_mod_inverse should
be checked within RSA_X931_derive_ex; however, NDI misses this
bug because distinguishers and the return value keep alive beyond
the searching scope, while there is no use against the return value
within the scope. Only one case falls in this category.

6.6 False Positives

The overall false-positive rate of NDI is 40.6%, which we believe
is promising for a static analyzer, and is better than the related
tools [1, 17, 20, 44]. Even after they tuned the threshold to reduce
false positives, IPPO still has a false-positive rate of 63.5%, and Crix
still has the rate of 65.4%. the false-positive rate of FICS is 88.0%
even after filtering. IncreLux randomly samples 44 bugs, and the
rate is 50.0%. The rates of compared tools are higher because they
are probabilistic while NDI is deterministic; Therefore, unlike NDI,
the compared tools cannot guarantee the accuracy of their findings.
The main causes of NDI’s false positives are summarized below.
Most causes are about implementation limitations instead of the
approach of NDI.
Limitations of under-constrained symbolic execution. NDI
employs under-constrained symbolic execution to identify distin-
guishers and remove infeasible paths. However, under-constrained
symbolic execution is unable to remove all infeasible paths be-
cause of under-constrainedness. For instance, in PHP project, the
function zim_SplDoublyLinkedList_add does not have a recovery

against the NULL state inconsistency caused by the callee function
spl_ptr_llist_offset. However, after careful confirmation of the
maintainer, we find the return value of spl_ptr_llist_offset can
never be NULL within the first function, which is not correctly
identified by NDI. Such cases account for 52% of false positives.
Imprecise alias analysis. NDI attempts to identify uses of critical
variables and checks over distinguishers by inter-procedural alias
analysis. However, due to the alias analysis still has false positives,
NDI will collect incorrect uses of critical variables and report false
bug reports. Such cases account for 24% of false positives.
Others. Besides the above causes, false positives can also be caused
by reasons like some recovery are omitted because of optimization
and the checks of distinguishers are missed. Such cases account for
24% of false positives.

6.7 Bug Coverage of NDI’s Approach

We emphasize again that NDI is designed to complement existing
detection tools by covering their blind spots, but not to replace them.
NDI is expected to have out-of-the-scope cases. However, we still
want to get a sense of the coverage of NDI’s approach. To evaluate
the coverage ofNDI, we perform an empirical analysis. With a set of
real bugs, we analyze (1) how many bugs would be missed by NDI’s
approach in principle and (2) howmany aremissed byNDI’s current
implementation. We manually collect all memory bugs (in total 105
bugs are identified), which are fixed between 26 March, 2022 to 26
April, 2022 and in OpenSSL library, httpd server, PHP interpreter, and
FreeBSD kernel. Those bugs are listed in Appendix [27]. We further
remove 1 out of 105 bugs because code of the bug has been removed
from projects. Finally, we have 104 bugs. Among those bugs, we
identify 56 of 104 bugs, i.e., 53.8% of bugs, can be covered by NDI’s
approach. Then, we actually apply NDI to them and successfully
detect 19 bugs. That is,NDI’s implementation has 37 false negatives,
which can be addressed with implementation improvements in the
future.

7 Discussion

Applicability of NDI. NDI covers blind spots of traditional
specification-based or deviation-based detection. However, NDI
is never a complete detection approach that is applicable to all
cases. In particular, NDI works with two pre-conditions in princi-
ple. First, the target function must have multiple code paths. the
bug path must have another path to pair with. Second, there must
be an inconsistent path pair. If both paths fail to perform the secu-
rity operation, NDI will miss the bug. As confirmed in §6.7, NDI’s
approach has a high coverage/recall of 53% in principle.
Data-flow analysis. Although NDI has identified 51 new bugs by
focusing on three security operations, our bug detection in principle
should find more bugs than practice with a higher precision rate.
One of the main reasons is that the data-flow analysis used in
different phases has accuracy issues, especially due to aliasing,
indirect calls, and assembly. In addition, in the coarse-grained scope
analysis, we set a limit for the depth of analysis for path-explosion
cases, which may introduce false negatives. Addressing such issues
is an independent research topic. Once we have a more accurate
data-flow analysis,NDIwill also improve its efficiency and accuracy.

Non-Distinguishable Inconsistencies as a Deterministic Oracle for Detecting Security Bugs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Supporting more security operations. NDI is a generic detec-
tion approach that can be plugged in with various security opera-
tions. In this paper, we use three operations as examples. In fact,
the targeted security operations are an input to NDI. Other compo-
nents, such as distinguisher identification, of NDI remain the same.
Other security operations include bound checks, lock/unlock and
reference counting. To support a new security operation, we will
need (1) automated identification of the security operation in the
code and (2) automated identification of the corresponding critical
variable. One challenge is that, if it involves custom functions, we
may need a pre-defined list of them. In addition, a critical variable
is the one targeted by the security operation. This is typically easy
to identify, except for lock/unlock where the critical variable is not
targeted directly, which will need additional inference.
Comparison with Newton. A state-of-the-art tool, Newton [32],
shares a similar logic when detecting vulnerable gadgets for ROP
attack: It collects indirect call gadgets which could be used by ROP
attackers through dynamic taint analysis. NDI has two significant
differences compared with Newton: first, Newton is a dynamic tool
while NDI is a static one. Second Newton focuses on ROP attack
and only collects indirect call gadgets; however, NDI is a general
bug detection oracle and do not focus on a particular gadget.

8 Related Works

Specification-based bug detection. In order to detect security
issues in a target system, the most intuitive and classical method is
to specify patterns and detect bugs against them. Smatch [4] and
Coccinelle [25] match and identify specified source-code patterns,
which are widely used to detect simple bugs in the Linux kernel.
Recently, more analysis tools have been developed to identify bugs
based on code patterns. LRSan [34] specifies lacking-recheck bugs,
while deadline specifies and detects double-fetch bugs in OS kernels.
SADA [3] detects unsafe DMA accesses in device drivers through a
pattern-based analysis. DCUAF [2] performs a summary-based lock-
set analysis to detect concurrency use-after-free bugs. HERO [38]
precisely detects error-handling issues with a disordered calling pat-
tern. Newton [32] uses a taint analysis to prevent ROP attacks with
given target constraints. In general, the reliability of such methods
depends on the quality of specifications and parsing the code ac-
cordingly, both of which can be complicated. On the other hand,
specification-based detection methods usually perform well only
on their target bug types, leaving new kinds of bugs undetected.
Inconsistency-based bug detection. Inconsistency-based detec-
tion methods report the inconsistencies among similar code snip-
pets as bugs, known as cross-checking. Engler et al. [7] uses cross-
checking to infer errors in systems code, while APISan [43] detects
API misuses through cross-checking symbolic traces. Crix [20] uses
indirect-call targets to construct semantically similar peer slices and
further detects missing-check bugs. FICS [1] executes similarity and
inconsistency analysis through a two-step clustering. IPPO [17] de-
fines object-based similar paths with four static rules. EECatch [26]
infers the appropriate severity level for error handling by analyzing
it in specific modules, and further checks the exaggerated one. In
general, cross-checking requires a sufficient number of similar code
snippets to ensure reliability. Also, as we showed in §6, deviations
may not be bugs. Different from previous inconsistency-based bug

detection tools, our method does not rely on similarity analysis and
can complement existing detection by covering their blind spots.

RID [21] detects refcount-leak bugs where a refcount operation
appears only on one path. A fundamental difference is that RID
does not consider distinguishers or recoveries. The requirement
of RID is more restrictive than IPPO. That is, the two paths must
share exactly the same return value and argument values, which
is rare in practice. In comparison, NDI employs a custom under-
constrained symbolic comparison to automatically and precisely
detect distinguishers and a two-staged analysis to check recoveries.
By manually checking the 51 new bugs found by NDI, we confirm
that none of them can be detected by RID in principle because the
paths always have differing return values or argument values.
Code-similarity analysis. Code-similarity analysis [11, 15, 16, 33,
40, 42] is a base of cross-checking and many bug detection methods.
More recently, IPPO [17] proposes object-based similar paths with
four static rules. FICS [1] applies machine learning techniques
to measure the functional similarity of code snippets. MVP [39]
uses signatures of code pieces to judge whether a piece of buggy
code is similar to the existing code. Crix [20] regards indirect-call
targets of the same indirect call as peers instead of computing the
similarity directly. Usually, a code-similarity analysis method could
only work well under limited scenarios or for specific bug types,
and measuring the semantic-similarity of different code snippets
remains unsolved.

9 Conclusion

Decades ago, researchers detect violations of specifications as bugs.
Specifications can be too diverse and complicated to provide, and un-
derstanding the code and enforcing the specifications are also hard.
Recent research favors cross-checking which detects deviations
among similar code as bugs and does not require complicated spec-
ifications or code understanding. However, cross-checking suffers
from bottlenecks; finding similar code is hard and even impossible
for custom code, and bugs may not be the deviating cases. Thus,
its detection is limited and unreliable. Motivated by the limitations,
we proposed Non-Distinguishable Inconsistencies (NDI) as a de-
terministic oracle for detecting security bugs. The intuition is if
inconsistent security operations are not distinguishable from the
external, there is no way to recover them, which results in bugs.
We realized NDI and ensured its precision and scalability through
two new techniques. We use a custom under-constrained symbolic
comparison to comprehensively and precisely detect distinguishers,
and use a two-staged analysis to limit analysis scope and mitigate
path explosion, and to precisely analyze recoveries. By applying
NDI to the OpenSSL library, the FreeBSD kernel, the httpd server,
and the PHP interpreter, we found 51 new bugs, and most of them
could not be detected by the state-of-the-art tools.

10 Acknowledgment

We thank the anonymous reviewers for their valuable suggestions
and comments. This research was supported in part by the NSF
awards CNS-1815621, CNS-1931208, and CNS-2045478. Any opin-
ions, findings, conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of NSF.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji, & Kangjie Lu

References

[1] Mansour Ahmadi, Reza Mirzazade farkhani, Ryan Williams, and Long Lu. 2021.
Finding Bugs Using Your Own Code: Detecting Functionally-similar yet Incon-
sistent Code. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 2025–2040. https://www.usenix.org/conference/usenixsecurity21/
presentation/ahmadi

[2] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. 2019. Effective static
analysis of concurrency use-after-free bugs in Linux device drivers. In 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19). 255–268.

[3] Jia-Ju Bai, Tuo Li, Kangjie Lu, and Shi-Min Hu. 2021. Static Detection of Unsafe
DMAAccesses in Device Drivers. In 30th USENIX Security Symposium (USENIX Se-
curity 21). USENIX Association, 1629–1645. https://www.usenix.org/conference/
usenixsecurity21/presentation/bai

[4] Dan Carpenter. 2009. Smatch - the source matcher. http://smatch.sourceforge.
[5] Navid Emamdoost, Qiushi Wu, Kangjie Lu, and Stephen McCamant. 2021. De-

tecting kernel memory leaks in specialized modules with ownership reasoning.
In Proceedings of the Network and Distributed System Security Symposium.

[6] Dawson Engler and Ken Ashcraft. 2003. RacerX: effective, static detection of race
conditions and deadlocks. ACM SIGOPS operating systems review 37, 5 (2003),
237–252.

[7] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as deviant behavior: A general approach to inferring errors in systems
code. ACM SIGOPS Operating Systems Review 35, 5 (2001), 57–72.

[8] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles Zhang.
2019. Smoke: scalable path-sensitive memory leak detection for millions of lines
of code. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 72–82.

[9] Josselin Feist, Laurent Mounier, and Marie-Laure Potet. 2014. Statically detect-
ing use after free on binary code. Journal of Computer Virology and Hacking
Techniques 10, 3 (2014), 211–217.

[10] Suman Jana, Yuan Jochen Kang, Samuel Roth, and Baishakhi Ray. 2016. Auto-
matically Detecting Error Handling Bugs Using Error Specifications.. In USENIX
Security Symposium. 345–362.

[11] Yuede Ji, Lei Cui, and H. Howie Huang. 2021. BugGraph: Differentiating Source-
Binary Code Similarity with Graph Triplet-Loss Network. Association for Comput-
ing Machinery, New York, NY, USA, 702–715.

[12] Yuan Kang, Baishakhi Ray, and Suman Jana. 2016. APEx: Automated inference of
error specifications for C APIs. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 472–482.

[13] Theodore Kremenek and Dawson R. Engler. 2003. Z-Ranking: Using Statistical
Analysis to Counter the Impact of Static Analysis Approximations. In SAS.

[14] Ted Kremenek, Paul Twohey, Godmar Back, and Andrew Ng. 2006. From Uncer-
tainty to Belief: Inferring the Specification Within. In 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 06). USENIX Association,
Seattle, WA. https://www.usenix.org/conference/osdi-06/uncertainty-belief-
inferring-specification-within

[15] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. 2016.
VulPecker: An Automated Vulnerability Detection System Based on Code Simi-
larity Analysis. In Proceedings of the 32nd Annual Conference on Computer Security
Applications (Los Angeles, California, USA) (ACSAC ’16). Association for Comput-
ing Machinery, New York, NY, USA, 201–213. https://doi.org/10.1145/2991079.
2991102

[16] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and
Wei Zou. 2018. aDiff: Cross-Version Binary Code Similarity Detection with DNN.
Association for Computing Machinery, New York, NY, USA, 667–678. https:
//doi.org/10.1145/3238147.3238199

[17] Dinghao Liu, Qiushi Wu, Shouling Ji, Kangjie Lu, Zhenguang Liu, Jianhai Chen,
and Qinming He. 2021. Detecting Missed Security Operations Through Differ-
ential Checking of Object-Based Similar Paths. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’21). Asso-
ciation for Computing Machinery, 1627–1644. https://doi.org/10.1145/3460120.
3485373

[18] Shen Liu, Gang Tan, and Trent Jaeger. 2017. Ptrsplit: Supporting general point-
ers in automatic program partitioning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 2359–2371.

[19] Jingbo Lu and Jingling Xue. 2019. Precision-preserving yet fast object-sensitive
pointer analysis with partial context sensitivity. Proceedings of the ACM on
Programming Languages 3, OOPSLA (2019), 1–29.

[20] Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting Missing-Check Bugs
via Semantic- and Context-Aware Criticalness and Constraints Inferences. In

28th USENIX Security Symposium (USENIX Security 19). USENIX Association,
1769–1786.

[21] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi. 2016. RID: finding reference
count bugs with inconsistent path pair checking. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and
Operating Systems. New York, NY, USA, 531–544.

[22] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-checking Semantic Correctness: The Case of Finding File
System Bugs. In Proceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP). Monterey, CA.

[23] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[24] Ben Niu and Gang Tan. 2014. Modular Control-Flow Integrity. In Proceedings
of the 2014 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). Edinburgh, UK.

[25] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. 2008.
Documenting and automating collateral evolutions in Linux device drivers. Acm
sigops operating systems review 42, 4 (2008), 247–260.

[26] Aditya Pakki and Kangjie Lu. 2020. Exaggerated Error Handling Hurts! An
In-Depth Study and Context-Aware Detection. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. Association for
Computing Machinery, 1203–1218. https://doi.org/10.1145/3372297.3417256

[27] Zhou Qingyang, Wu Qiushi, Liu Dinghao, Ji Shouling, and Lu Kangjie. 2022.
Non-Distinguishable Inconsistencies as a Deterministic Oracle for Detecting Se-
curity Bugs. https://github.com/umnsec/ndi/blob/main/Nondistinguishable_
Inconsistencies_as_a_Deterministic_Oracle_for_Detecting_Security_Bugs.pdf

[28] Lingyun Situ, Linzhang Wang, Yang Liu, Bing Mao, and Xuandong Li. 2018.
Vanguard: Detecting Missing Checks for Prognosing Potential Vulnerabilities. In
Proceedings of the Tenth Asia-Pacific Symposium on Internetware. ACM, 5.

[29] Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, flow-, and field-
sensitive data-flow analysis using synchronized pushdown systems. Proceedings
of the ACM on Programming Languages 3, POPL (2019), 1–29.

[30] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008. Au-
toISES: Automatically Inferring Security Specification and Detecting Violations..
In USENIX Security Symposium. 379–394.

[31] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In USENIX Security Symposium. 941–955.

[32] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen,
Herbert Bos, and Cristiano Giuffrdia. 2017. The dynamics of innocent flesh on
the bone: Code reuse ten years later. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 1675–1689.

[33] Shuai Wang and Dinghao Wu. 2017. In-Memory Fuzzing for Binary Code Simi-
larity Analysis. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE
Press, 319–330.

[34] WenwenWang, Kangjie Lu, and Pen-Chung Yew. 2018. Check it Again: Detecting
Lacking-Recheck Bugs in OS Kernels. In Proceedings of the 25th ACM Conference
on Computer and Communications Security (CCS). Toronto, Canada.

[35] Westley Weimer and George C Necula. 2005. Mining temporal specifications
for error detection. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 461–476.

[36] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. 2020. Precisely Char-
acterizing Security Impact in a Flood of Patches via Symbolic Rule Comparison.
In Proceedings of the 27th Annual Network and Distributed System Security Sym-
posium (NDSS’20).

[37] Qian Wu, Guangtai Liang, Qianxiang Wang, Tao Xie, and Hong Mei. 2011. Itera-
tive mining of resource-releasing specifications. In 2011 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2011). IEEE, 233–242.

[38] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant, and Kangjie Lu.
2021. Understanding and Detecting Disordered Error Handling with Precise Func-
tion Pairing. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 2041–2058. https://www.usenix.org/conference/usenixsecurity21/
presentation/wu-qiushi

[39] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,
Binghong Liu, Yang Liu, Wei Huo, Wei Zou, and Wenchang Shi. 2020. MVP:
Detecting Vulnerabilities using Patch-Enhanced Vulnerability Signatures. In
29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
1165–1182.

https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadi
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadi
https://www.usenix.org/conference/usenixsecurity21/presentation/bai
https://www.usenix.org/conference/usenixsecurity21/presentation/bai
http://smatch.sourceforge
https://www.usenix.org/conference/osdi-06/uncertainty-belief-inferring-specification-within
https://www.usenix.org/conference/osdi-06/uncertainty-belief-inferring-specification-within
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1145/3238147.3238199
https://doi.org/10.1145/3238147.3238199
https://doi.org/10.1145/3460120.3485373
https://doi.org/10.1145/3460120.3485373
https://doi.org/10.1145/3372297.3417256
https://github.com/umnsec/ndi/blob/main/Nondistinguishable_Inconsistencies_as_a_Deterministic_Oracle_for_Detecting_Security_Bugs.pdf
https://github.com/umnsec/ndi/blob/main/Nondistinguishable_Inconsistencies_as_a_Deterministic_Oracle_for_Detecting_Security_Bugs.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-qiushi
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-qiushi

Non-Distinguishable Inconsistencies as a Deterministic Oracle for Detecting Security Bugs CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[40] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Xiaodong
Song. 2017. Neural Network-based Graph Embedding for Cross-Platform Binary
Code Similarity Detection. Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (2017).

[41] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-Temporal
Context Reduction: A Pointer-Analysis-Based Static Approach for Detecting
Use-after-Free Vulnerabilities. In Proceedings of the 40th International Conference
on Software Engineering. Association for Computing Machinery, 327–337.

[42] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order
Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection.
Proceedings of the AAAI Conference on Artificial Intelligence 34, 01 (Apr. 2020),

1145–1152. https://doi.org/10.1609/aaai.v34i01.5466
[43] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik.

2016. APISan: Sanitizing API Usages through Semantic Cross-Checking. In 25th
USENIX Security Symposium (USENIX Security 16). USENIX Association, Austin,
TX, 363–378.

[44] Yizhuo Zhai, Yu Hao, Zheng Zhang, Weiteng Chen, Guoren Li, Zhiyun Qian,
Chengyu Song, Manu Sridharan, Srikanth V Krishnamurthy, Trent Jaeger, et al.
2022. Progressive Scrutiny: Incremental Detection of UBI bugs in the Linux
Kernel. In Proceedings of the 29th Annual Network and Distributed System Security
Symposium (NDSS’22).

https://doi.org/10.1609/aaai.v34i01.5466

	Abstract
	1 Introduction
	2 Motivation
	2.1 A Motivating Example
	2.2 Why Existing Approaches Fail
	2.3 Why NDI Can Detect the Bugs

	3 Definitions and Overview
	3.1 Definitions
	3.2 Overview

	4 A Bug-Detection System Based on NDI
	4.1 Identification of Inconsistent Path Pairs
	4.2 Identification of Distinguishers
	4.3 Two-Staged Analysis for Inconsistency Recovery

	5 Implementation
	5.1 Data Structures and Representations
	5.2 Implemented Security States/Operations
	5.3 Optimizations for Distinguisher Identification
	5.4 Two-staged Analysis

	6 Evaluation
	6.1 Analysis Performance
	6.2 Bug Findings
	6.3 Identification of Distinguishers
	6.4 Effectiveness of Scoping
	6.5 Comparison with Most Related Tools
	6.6 False Positives
	6.7 Bug Coverage of NDI's Approach

	7 Discussion
	8 Related Works
	9 Conclusion
	10 Acknowledgment
	References

